Q1.

4 (i)		Use $tan(A \pm B)$ formula to obtain an equation in $tan x$		M1
		State equation $\frac{\tan x + 1}{1 - \tan x} = 4 \frac{(1 - \tan x)}{1 + \tan x}$, or equivalent		A1
		$1 - \tan x$ $1 + \tan x$ Transform to a 2- or 3-term quadratic equation		M1
		Obtain given answer correctly		A1
				[4]
				۲۰,
	(ii)	Solve the quadratic and calculate one angle, or establish that $t = \frac{1}{3}$, 3 (only)		M1
		Obtain one answer, e.g. $x = 18.4^{\circ} \pm 0.1^{\circ}$		A1
		Obtain second answer $x = 71.6^{\circ}$ and no others in the range		A1
		[Ignore answers outside the given range]		[3]
00				
Q2 .				
	(:)	Chata answer B = 5	D4	
4	(i)	State answer R = 5 Use trigonometric formulae to find α	B1 M1	
		Obtain answer $\alpha = 53.13^{\circ}$	A1	3
	(ii)	Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5)	M1	
		Obtain answer 11.0° Carry out correct method for the second root e.g. 180° – 64.16° – 53.13°	A1√ M1	
		Obtain answer 62.7° and no others in the range	A1√	4
		[Ignore answers outside the given range.]		
	(iii)	State least value is 2	B1√	1
Q3.				
2	(i) U	se trig formulae to express LHS in terms of cos x and sin x	MI	
	u	se correct exact values of cos 60°, sin 60°, etc brain given answer	MI Al	3
		ate or imply answer is $\cos^{-1}(1/\sqrt{3})$	MI	-
		batha income 54.79	AL	1

Q4.

5 (i) State $R = \sqrt{26}$ B₁ Use trig formula to find a M1 Obtain $\alpha = 11.31^{\circ}$ with no errors seen [3] A1 (ii) Carry out evaluation of $\cos^{-1}(\frac{4}{\sqrt{26}}) (\approx 38.3288...^{\circ})$ M1Obtain answer 27.0° A1 Carry out correct method for second answer M1Obtain answer 310.4° and no others in the range A1V [4] [Ignore answers outside the given range.] **Q5**. Use $\tan^2 x = \sec^2 x - 1$ or $\sin^2 x = 1 - \cos^2 x$ M1 Obtain 3-term quadratic in $\sec x$ or $\cos x$, e.g. $2\sec^2 x + \sec x - 6 = 0$ A1 Make reasonable solution attempt at a 3-term quadratic M1 Obtain $\sec x = \frac{3}{2}$ and $\sec x = -2$, or equivalent A1 [or $6\cos^2 x - \cos x - 2 = 0$ $\cos x = \frac{2}{3}, -\frac{1}{2}$ Obtain answer $x = 48.2^{\circ}$ A1 Obtain answer $x = 120^{\circ}$ and no others in the range A1 [6] [Ignore answers outside the given range.] **Q6**. Use $tan(A \pm B)$ formula to obtain an equation in tan xM1Use $\tan 45^{\circ} = 1$ and obtain a correct equation in any form A1 Obtain the given equation correctly [3] A1 M1(ii) Solve the given quadratic in tan x and evaluate an inverse tangent Obtain a correct answer, e.g. 18.4° A1 Obtain second answer, e.g. 26.6°, and no others in the given interval A1 [3] [Treat the giving of answers in radians as a misread. Ignore answers outside the given interval.] Q7. 8 Use correct sin(A - B) and cos(A - B) formulae M1 Substitute exact values for sin 30° etc. M1Obtain given answer correctly A1 [3] (ii) State $\sqrt{3} \sin x = \frac{1}{2} \sec x$ B₁ Rearrange to $\sin 2x = k$, where k is a non-zero constant M1 Carry out evaluation of $\frac{1}{2} \sin^{-1} \left(\frac{1}{\sqrt{3}} \right)$ M1Obtain answer 17.6° A1 Carry out correct method for second answer M1Obtain remaining 3 answers from 17.6°, 72.4°, 197.6°, 252.4° and no others in the [6] A1 [Ignore answers outside the given range]

Q8.

8	(i)	State or imply $R = \sqrt{52}$ or $2\sqrt{13}$	B1	
		Use appropriate formula to find α Obtain 56.31°	M1 A1	[3]
	(ii)	Attempt to find at least one value of $\theta - \alpha$ Obtain one correct value 80.9° of θ Carry out correct method to find second answer Obtain 211.7° and no others in range	M1 A1 M1 A1	[4]
	(iii)	Obtain 60, following their value of <i>R</i> Obtain 8. Allow quoted solution	B1 √ B1	[2]
Q9.				
8	(i)	Use $\csc\theta = \frac{1}{\sin \theta}$ and $\sec \theta = \frac{1}{\cos \theta}$	B1	
		Attempt to simplify left-hand side Confirm given right-hand side $4\cos 2\theta$ with no errors seen	M1 A1	[3]
	(ii)	(a) State or imply $\cos 2\theta = \frac{3}{4}$	В1	
		Attempt correct process to find at least one angle Obtain 20.7° Obtain 159.3° and no others in range	M1 A1 A1	[4]
		(b) Recognise as $\frac{4\cos 30^{\circ}}{\sin^2 30^{\circ}}$	В1	
		Obtain $8\sqrt{3}$	B1	[2]
Q10				
	(5)	11 2 0 1 1 2 0	Di	

C

(i) Use $\sec^2 \theta = 1 + \tan^2 \theta$ B₁ Attempt solution of quadratic equation in $\tan \, \theta$ M₁ Obtain $\tan^2 \theta - 12 \tan \theta + 36 = 0$ or equivalent and hence $\tan \theta = 6$ [3] A1 (ii) (a) Attempt use of tan(A - B) formula M1Obtain $\frac{5}{7}$ following their value of tan θ A1√ [2] (b) Attempt use of $\tan 2\theta$ formula M1 Obtain $-\frac{12}{35}$ A1 [2]

Q11.

(i) State or imply R = 15B1Use appropriate formula to find α M1 Obtain 53.13° A1 [3] (ii) Attempt to find at least one value of $\theta - \alpha$ M1 Obtain one correct value 68.6° of θ A1 Carry out correct method to find second answer M1Obtain 217.7° and no others in range A1 [4] (iii) State 15, following their value of R from part (i) B1√ [1] Q12. (i) State $R = \sqrt{29}$ B₁ Use trig formula to find a M1 Obtain $\alpha = 21.80^{\circ}$ with no errors seen A1 [3] (ii) Carry out evaluation of $\sin^{-1}\left(\frac{4}{R}\right) \left(\approx 47.97^{\circ}\right)$ M1Carry out correct method for one correct answer M1Obtain one correct answer e.g. 13.1° A1 Carry out correct method for a further answer M1Obtain remaining 3 answers 55.1°, 193.1°, 235.1° and no others in the range A1 [5] (iii) Greatest value of $10 \sin 2\theta + 4 \cos 2\theta = 2\sqrt{29}$ M1 1 A1 [2] 116 Q13. (i) Use correct sin(A - B) and cos(A - B) formula M1 Substitute exact values for cos 30° etc. M1 Obtain given answer correctly Al [3] (ii) State $2\csc x = 3\cot^2 x - 2$ BI Use $\cot^2 x = \csc^2 x - 1$ MI Attempt solution of quadratic equation in $\csc x$ or $\sin x$ M1 $(3\csc^2 x - 2\csc x - 5 = 0 \text{ or } 5\sin^2 x = 2\sin x - 3 = 0)$ Obtain $\sin x = \frac{3}{5}$ or -1Al√ Obtain one correct answer for $\sin^{-1}\left(\frac{3}{5}\right)$ A1

Q14.

Obtain remaining 2 answers from 36.9°, 143.1°, 270° and no others in the range

[Ignore answers outside the given range] SC If only answer given is 270° Al

B1

[6]

5 (i) Use relevant formulae for
$$\cos(x-30^\circ)$$
 and $\sin(x-60^\circ)$ { Chow the sign eyest} M1*

Use $\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$ and $\sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2}$
M1(dep*)

Collect terms and obtain given answer correctly
(ii) Carry out correct processes to evaluate a single trig ratio
Obtain answer 73.9°
Obtain second answer 253.9° and no others
(iii) State or imply that $\cos^2 x = \frac{1}{13}$ or $\sin^2 x = \frac{12}{13}$
B1

Use a relevant trig formula to evaluate $\cos 2x$
Obtain exact answer $-\frac{11}{13}$ correctly
A1 3

[Use of only say $\cos x = +\frac{1}{\sqrt{13}}$, probably from a right triangle, can earn B1M1A0.]

Q15.

4 (i)	State answer $R = 2$	B1
	Use trig formula to find α	M1
	Obtain answer $\alpha = \frac{1}{3}\pi$	A1
		[3]

© University of Cambridge Local Examinations Syndicate 2003

Page 2	Mark Scheme	Syllabus	Paper
roque 3	A AND AS LEVEL - NOVEMBER 2003	9709	2
(ii)	Carry out, or indicate need for, evaluation of $\cos^{-1}(\sqrt{2}/2)$		M1*
	Obtain, or verify, the solution $\theta = \frac{7}{12}\pi$		A1
	Attempt correct method for the other solution in range		
	i.e. $-\cos^{-1}(\sqrt{2}/2) + \alpha$		M1(dep*)
	Obtain solution $\theta = \frac{1}{12}\pi$: [M1A0 for $\frac{25\pi}{12}$]		A1
			[4]

Q16.

At any stage, state answer
$$x = 90^{\circ}$$
 (c.w.o)

Write the equation in the form $6\sin x \cos x = \cos x$

Remove factor of $\cos x$ and solve an equation in $\sin x$ for x

Obtain answer $x = 9.59^{\circ}$ and no others in the range (9.6° OK: rubric)

(Ignore answers outside the given range.)

Q17.

8 (i)	State answer $R = \sqrt{2}$ Use trigonometric formulae to find α	B1 M1	
	Obtain answer $\alpha = \frac{1}{4}\pi$ (NOT 45°, unless 45° = $\frac{\pi}{4}$ ° somewhere, later)	A1	3
(ii)	Use $\cos \theta$ + $\sin \theta = \sqrt{2} \cos(\theta - \frac{1}{4}\pi)$ to justify the given answer	В1	1
(iii)	Differentiate using the quotient or product rule Obtain derivative in any correct form Obtain the given answer correctly	M1 A1 A1	3
(iv)	Convert integrand to give $\int_{-2}^{1} \sec^2(\theta - \frac{\pi}{4}) d\theta$	B1	
	Integrate, to obtain function $\frac{1}{2}$ tan $(\theta - \frac{\pi}{4})$	M1	
	Substitute (correct) limits correctly, to obtain given result	A1	3

Q18.

(i):	State answer $R = 11$	B1	
	Use trig formula to find or	MI AL	
	Obtain a = 22.62°	AL	3
(ii)	Carry mit evaluation of cos ⁻¹ (15) (> 39.715.7)	MI	
	Obtain answer 17.1°	A1	
	Carry out correct method for second answer	M3	
	Obtain maswer 297.7° and no others in the range	AL	4
	[Ignore answers outside the given range]		

Q19.

4	(i) Use tan(4 ± B) formula to express LHS in terms of tan x	MI	
	Obtain $\frac{\tan x + 1}{1 - \tan x} - \frac{1 - \tan x}{1 + \tan x}$, or equivalent	Al	
	Make relevant use of the tan 2A formula	MI	
	Obtain given answer correctly	Al	. 4
	(ii) State or imply $2x = \tan^{-1}(2/2)$	MI	
	Obtain answer $x = 22 \frac{1}{2}$	Al	
	Obtain answer $x = 112 \frac{1}{2}$ and no others in range	A)	3

Q20.

6	(i)	State an	swer $R = 17$, allow $\sqrt{289}$	B1	
			formula to find α	M1	
		Obtain a	$\alpha = 61.93^{\circ}, (1.08 \text{ radians})$	A1	[3]
	(ii)	Carry ou	at evaluation of $\sin^{-1}(14/17) \approx 55.44^{\circ}$, or equivalent	M1	
			inswer 117.4°, (2.06 radians)	A1	
		The state of the s	it correct method for second answer	M1	
			answer 186.5° and no others in the range (3.255 radians)	A1√	[4]
		[Ignore	answers outside the given range.]		
Q2 1	l <u>.</u>				
	•				
4	(i)	Use corre	acct sin(A + B) and $cos(A + B)$ formulae	M1	
			e exact values for sin 30° etc.	M1	
		Obtain gi	ven answer correctly	A1	[3]
	(ii)	Solve for	x	M1	
			$nswer x = 10.9^{\circ}$	A1	55-2
			econd answer $x = -169.1^{\circ}$ and no others in the range	A1	[3]
		[Ignore a	nswers outside the given range.]		
O2 2)				
Q 22					
4			se trig formulae to express equation in terms of $\sin x$ and $\cos x$	M1	
		Us	se $\cos 60^\circ = \frac{1}{2}$ and $\sin 60^\circ = \frac{\sqrt{3}}{2}$, or equivalent	M1	
		Ol	btain equation in $\sin x$ and $\cos x$ in any correct form	A1	
		Ol	btain tan $x = \sqrt{3} / 5$, or 0.3464, or equivalent	A1	[4]
		(ii) (iii)	htain anguar v = 10.19	D1	
			btain answer $x = 19.1^{\circ}$ btain answer $x = 199.1^{\circ}$ and no others in the range	B1 B1√	[2]
			gnore answers outside the given range.]	D 1.	[2]
Q23	3 .				
6		(i) St	ate answer $R = 5$	B1	
			se trig formula to find a	M1	
			$btain a = 53.13^{\circ}$	A1	[3]
		(ii) Ev	valuate $\cos^{-1}(4.5/5) \approx 25.84^{\circ}$	M1	
		Ol	btain answer 79.0°	A1	
			arry out correct method for second answer	M1	
			btain answer 27.3° and no others in the given range	A1√	[4]
			reat the giving of answers in radians as a misread. Ignore answers outside the		

Q24.

5	Use correct trig identity to obtain a quadratic in $\cot \theta$ or $\tan \theta$ Solve the quadratic correctly	M1 A1	
	Obtain $\tan \theta = \frac{1}{2}$ or $-\frac{2}{3}$	A1√	
	2 3 Obtain answer 26.6° or 146.3°	A1	
	Carry out correct method for second answer from either root Obtain remaining 3 answers from 26.6°, 146.3°, 206.6°, 326.3° and no others in the range [Ignore answers outside the given range]	M1 A1	
Q25.			
6	(i) State $R = \sqrt{5}$ Use trig formula to find α Obtain $\alpha = 26.57^{\circ}$ with no errors seen	B1 M1 A1	[3]
	(ii) Carry out evaluation of $\sin^{-1}\left(\frac{\pm 0.4}{\sqrt{5}}\right) (\approx \pm 10.3048^{\circ})$	M1	
	Obtain answer 16.3° Carry out correct method for second answer Obtain answer 216.9° and no others in the range	A1 M1 A1	[4]
Q26.			
8	(i) State $R = \sqrt{34}$	B1	
	Use trig formula to find α	M1	
	Obtain $\alpha = 30.96^{\circ}$ with no errors seen	A1	[3]
	(ii) Carry out evaluation of $\cos^{-1} \left(\frac{\pm 4}{R} \right) (\approx 46.6861^{\circ} \text{ or } 313.3139^{\circ})$	M1	
	Obtain answer 15 .7°	A 1	
	Carry out correct method for second answer Obtain answer 282.3° or 282.4° and no others in the range	M1 A1	[4]
	(iii) State $-3\sqrt{34} \ (=-3R)$	В1√	[1]
Q27.			
5	Use trig identity correctly to obtain a quadratic in $\tan 2\theta$ Solve the quadratic correctly	M1 M1	
	Obtain $\tan 2\theta = 1$ or $-\frac{4}{5}$	A1	
	Obtain one correct answer Carry out correct method for second answer from either root Obtain remaining 3 answers from 22.5°, 112.5°, 70.7°, 160.7° and no others in the range [Ignore answers outside the given range]	A1 M1 A1	[6]

Q28.

3	Make relevant use of the $\cos 2\theta$ formula Obtain a correct quadratic in $\cos \theta$ Solve a quadratic in $\cos \theta$ Obtain answer $\theta = 60$ and no others in the range (Ignore answers outside the given range)				
Q29).				
8	(a)	Use $tan (A + B)$ formula to obtain an equation in $tan B$	M1		
		State equation $\frac{t + \tan B}{1 - t \tan B} = 4$, or equivalent	A1		
		Solve to obtain $\tan B = \frac{4-t}{1+4t}$	A1	[3]	
	(b)	State equation $2\left(\frac{\tan 45 - \tan x}{1 + \tan 45 \tan x}\right) = 3 \tan x$, or equivalent	B1		
		Transform to a quadratic equation	M1		
		Obtain $3\tan^2 x + 5\tan x - 2 = 0$ (or equivalent) Solve the quadratic and calculate one angle, or establish that $\tan x = \frac{1}{3}, -2$	A1 M1		
		Obtain one answer, e.g. $x = 18.4^{\circ}$	A1		
		Obtain other 3 answers 116.6°, 198.4°, 296.6° and no others in range	A1	[6]	
Q30).				
7		(i) State $R = \sqrt{10}$	B1		
		Use trig formula to find α Obtain $\alpha = 18.43^{\circ}$ with no errors seen	M1	F23	
		Obtain $\alpha = 18.43^{\circ}$ with no errors seen	A1	[3]	
		(ii) Carry out evaluation of $\cos^{-1}\left(\frac{2}{R}\right) \left(\approx 50.77^{\circ}\right)$	M1		
		Carry out correct method for one correct answer	M1		
		Obtain one correct answer e.g. 34.6° Carry out correct method for a further answer	A1 M1		
		Obtain remaining 3 answers 163.8°, 214.6°, 343.8° and no others in the range	A1	[5]	
Q31	۱.				
3		e trig identity correctly to obtain a quadratic in cosec θ or $\sin \theta$	M1		
		lve the quadratic correctly tain $\sin \theta = \frac{1}{4}$ or $-\frac{2}{3}$	M1 A1		
		tain one correct answer	A1		
		rry out correct method for second answer from either root	DM1		
		tain remaining 3 answers from 14.5, 165.5, 221.8, 318.2 and no others in the range nore answers outside the given range]	A1	[6]	

Q32.

2 Use $\sin 2\theta = 2\sin \theta \cos \theta$ B1 Simplify to obtain form $c_1 \sin^2 \theta = c_2$ or equivalent M1 Find at least one value of θ from equation of form $\sin \theta = k$ M1 Obtain 35.3° and 144.7° A1 [4]

Q33.

- 7 (i) Use $\sec^2 \alpha = 1 + \tan^2 \alpha$ B1

 Confirm $3 \tan^2 \alpha + 4 \tan \alpha 4 = 0$ B1

 Solve quadratic equation for $\tan \alpha$ M1

 Obtain, finally, $\tan \alpha = \frac{2}{3}$ only
 - (ii) State or imply $\tan(\alpha + \beta) = \frac{1}{6}$ B1

 State $\frac{\frac{2}{3} + \tan \beta}{1 \frac{2}{3} \tan \beta} = \frac{1}{6}$, following their value of $\tan \alpha$ B1 $\sqrt{\frac{1}{3} \cot \beta}$ Solve equation of form $\frac{a + bt}{c + dt}$ for t M1

 Obtain $\tan \beta = -\frac{9}{20}$ A1
 - Conclude with $\cot \beta = -\frac{20}{9}$ or exact equivalent A1 [5]

Q34.

- 7 (i) State or imply R = 13 B1
 Use appropriate formula to find α M1
 Obtain 67.38° A1 [3]
 - (ii) Attempt to find at least one value of $\cos^{-1}\frac{8}{13}$ or $\cos^{-1}\frac{8}{R}$ M1

 Obtain one correct value of θ (240.6 or 344.6)

 Carry out correct method to find second value of θ within the range

 Obtain second correct value (344.6 or 240.6)

 A1 [4]
 - (iii) State or imply $7 + 13\cos\left(\frac{1}{2}\phi + 67.38\right)$ following their answers from part (i) B1\(^\frac{1}{2}\phi\) State 20 B1
 Attempt to find ϕ for which $\cos\left(\frac{1}{2}\phi + 67.38\right) = 1$ M1
 Obtain 585.2 A1 [4]

P3 (variant1 and 3)

Q1.

2	OI M OI OI	btain lake i btain btain btain	rrect cos $2A$ formula and obtain an equation in $\sin \theta$ $4\sin^2 \theta + \sin \theta - 3 = 0$, or equivalent reasonable attempt to solve a 3-term quadratic in $\sin \theta$ answer 48.6° answer 131.4° and no others in the given range answer 270° and no others in the given range the giving of answers in radians as a misread. Ignore answers outside the given range.]	M1 A1 M1 A1 A1 √ A1	[6]
Q2.					
3	Ob So Ob Ob	otain lve a otain otain	t to use $\tan(A \pm B)$ formula and obtain an equation in $\tan x$ 3-term quadratic $2 \tan^2 x + 3 \tan x - 1 = 0$, or equivalent 3-term quadratic and find a numerical value of x answer 15.7° answer 119.3° and no others in the given interval answers outside the given interval. Treat answers in radians, 0.274 and 2.08, as a misrea	M1 A1 M1 A1 A1	[5]
Q3.					
9	(i)	Exp	ress $\cos 4\theta$ as $2 \cos^2 2\theta - 1$ or $\cos^2 2\theta - \sin^2 2\theta$ or $1 - 2 \sin^2 2\theta$ ress $\cos 4\theta$ in terms of $\cos \theta$ ain $8 \cos^4 \theta - 8 \cos^2 \theta + 1$ $\cos 2\theta = 2 \cos^2 \theta - 1$ to obtain given answer $8 \cos^4 \theta - 3$ AG	B1 M1 A1 A1	[4]
	(ii)	(a)	State or imply $\cos^4 \theta = \frac{1}{2}$ Obtain 0.572 Obtain -0.572	B1 B1 B1	[3]
		(b)	Integrate and obtain form $k_1\theta + k_2 \sin 4\theta + k_3 \sin 2\theta$ Obtain $\frac{3}{8}\theta + \frac{1}{32}\sin 4\theta + \frac{1}{4}\sin 2\theta$ Obtain $\frac{3}{32}\pi + \frac{1}{4}$ following completely correct work	M1 A1 A1	[3]
Q4.					
4	(i)	Ob	e $tan(A \pm B)$ formula correctly at least once and obtain an equation in $tan\theta$ tain a correct horizontal equation in any form e $tan60^{\circ} = \sqrt{3}$ throughout tain the given equation correctly	M1 A1 M1 A1	[4]
	(ii)	Ob Ob [Ig	tain answer 16.8° tain answer 163.2° nore answers outside the given interval. Treat answers in radians (0.293 and 2.85) as a sread.]	B1 B1√ B1√	[3]

Q5.

6	(i)		se $tan(A + B)$ and $tan 2A$ formulae to obtain an equation in $tan x$ obtain a correct equation in $tan x$ in any form	M1 A1	
			otain an expression of the form $a \tan^2 x = b$	M1	
			tain the given answer	A1	[4]
	(11)	C.,	bstitute $k = 4$ in the given expression and solve for x	M1	
	(II)		obstitute $k = 4$ in the given expression and solve for x obtain answer, e.g. $x = 16.8^{\circ}$	A1	
		Ob [Ig	total answer, e.g. $x = 16.8$ otal second answer, e.g. $x = 163.2^{\circ}$, and no others in the given interval gnore answers outside the given interval. Treat answers in radians as a misread and duct A1 from the marks for the angles.]	A1	[3]
	(iii) Su	bstitute $k = 2$, show $\tan^2 x < 0$ and justify given statement correctly	B1	[1]
Q6.					
	(1)	C : .		D.	
9	(1)		te or imply $R = 5$	B1 M1	
			e relevant trigonometry to find α tain $\alpha = 0.6435$	A1	[3]
		OU	ani (1 – 0.0733	711	
	(ii)	(a)	Carry out appropriate method to find one value in given range	M1	
			Obtain 1.80	A1	
			Carry out appropriate method to find second value in given range	M1	F.43
			Obtain 5.77 and no other value	A1	[4]
		(b)	Express integrand as $k \sec^2(\theta - \text{their } \alpha)$ for any constant k	M1	
			Integrate to obtain result $k \tan(\theta - \text{their } \alpha)$	A1	
			Obtain correct answer $2 \tan(\theta - 0.6435)$	A1	[3]
Q7.					
3			rect tan 2A formula and cot $x = 1/\tan x$ to form an equation in $\tan x$	M1	
			a correct horizontal equation in any form	A1	
			n equation in $\tan^2 x$ for x answer, e.g. 40.2°	M1 A1	
	Ob	tain	second answer, e.g. 139.8°, and no other in the given interval answers outside the given interval.]	A1√	[5]
			inswers in radians as a misread and deduct A1 from the marks for the angles.]		
			or the answer $x = 90^{\circ}$ give B1 and A1 for one of the other angles 1		

Q8.

3	Attempt use of $cos(A+B)$ formula to obtain an equation in $cos \theta$ and $sin \theta$	M1	
	Use trig formula to obtain an equation in tan θ (or cos θ , sin θ or cot θ)	M1	
	Obtain $\theta = 1/(4 + \sqrt{3})$ or equivalent (or find $\cos \theta$, $\sin \theta$ or $\cot \theta$)	A1	
	Obtain answer $\theta = 9.9^{\circ}$	A1	
	Obtain $\theta = 189.9^{\circ}$, and no others in the given interval	A1	[5]
	[Ignore answers outside the given interval. Treat answers in radians as a misread (0.173, 3.31).]		
	[The other solution methods are via cos $\theta = \pm (4 + \sqrt{3}) / \sqrt{(1 + (4 + \sqrt{3})^2)}$ or		
	$\sin \theta = \pm 1/\sqrt{\left(1 + \left(4 + \sqrt{3}\right)^2\right)}.$		

Q9.

8	(i)	Obt	tain or imply $R = 4$	B1	
		Use	e appropriate trigonometry to find α	M1	
		Obt	tain $\alpha = 52.24$ or better from correct work	A1	[3]
	(ii)	(a)	State or imply $\theta - \alpha = \cos^{-1}(-4 \div R)$	M1	
			Obtain 232.2 or better	A1	[2]
		(b)	Attempt at least one value using $\cos^{-1}(3 \div R)$	M1	
			Obtain one correct value e.g. ± 41.41°	A1	
			Use $\frac{1}{2}\theta - \alpha = \cos^{-1}\left(\frac{3}{R}\right)$ to find θ	M1	
			Obtain 21.7	A1	[4]

Q10.

(i) State or imply $R = \sqrt{10}$ B1Use trig formulae to find α M1Obtain $\alpha = 71.57^{\circ}$ with no errors seen [3] A1 [Do not allow radians in this part. If the only trig error is a sign error in $cos(x - \alpha)$ give M1A0] (ii) Evaluate $\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684...°) (Allow 50.7° here) B1√ Carry out an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 180^{\circ}$ M1Obtain an answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$ A1 Use an appropriate method to find another value of 2θ in the above range M1Obtain second angle, e.g. $\theta = 10.4^{\circ}$, and no others in the given range A1 [5] [Ignore answers outside the given range.] [Treat answers in radians as a misread and deduct A1 from the answers for the angles.] [SR: The use of correct trig formulae to obtain a 3-term quadratic in tan θ , sin 2θ , $\cos 2\theta$, or $\tan 2\theta$ earns M1; then A1 for a correct quadratic, M1 for obtaining a value of θ in the given range, and A1 + A1 for the two correct answers (candidates who square must reject the spurious roots to get the final A1).]

Q11.

\rightarrow	10		_	\leftarrow
3	(i)	State or imply $R = 17$	B1	
		Use correct trigonometric formula to find α	M1	
		Obtain 61.93° with no errors seen	A1	[3]
	(ii)	Evaluate $\cos^{-1} \frac{12}{R}$ (= 45.099)	M1	
		Obtain answer 107.0°	A 1	
		Carry out correct method for second answer	M1	
		Obtain answer 16.8° and no others between 0° and 360°	A1	[4]

Q12.

3	Attempt use of $\sin (A + B)$ ar Obtain a correct equation in a	and $\cos (A - B)$ formulate to obtain an equation in $\cos \theta$ and $\sin \theta$	M1 A1	
		n equation in tan θ (or $\cos \theta$, $\sin \theta$ or $\cot \theta$)	M1	
	Obtain $\tan \theta =$	or equivalent (or find cost θ , sin θ or cot θ)	A1	
	Obtain answer $\theta = 105.9^{\circ}$, and no others in the given interval [Ignore answers outside the given material]		A1	[5]

Q13.

Q14.

7 (i) Use $\sec \theta = \frac{1}{\cos \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$ Bl Use $\sin 2\theta = 2\sin\theta\cos\theta$ and to form a horizontal equation in $\sin\theta$ and $\cos\theta$ or fractions with common denominators M1 Obtain given equation $2\sin\theta + 4\cos\theta = 3$ correctly [3] Al (ii) State or imply $R = \sqrt{20}$ or 4.47 or equivalent BI Use correct trigonometry to find α M1 Obtain 63.43 or 63.44 with no errors seen A1 [3] (iii) Carry out a correct method to find one value in given range M1 Obtain 74.4° (or 338.7°) A1 Carry out a correct method to find second value in given range M1 Obtain 338.7° (or 74.4°) and no others between 0° and 360° Al [4] Q15. State $\sin 2\alpha = 2\sin \alpha \cos \alpha$ and $\sec \alpha = 1/\cos \alpha$ **B**1 Obtain $2\sin\alpha$ B₁ [2] (ii) Use $\cos 2\beta = 2\cos^2 \beta - 1$ or equivalent to produce correct equation in $\cos \beta$ **B**1 Solve three-term quadratic equation for $\cos \beta$ M1 Obtain $\cos \beta = \frac{1}{3}$ only A1 [3] Q16. (i) Use $tan(A \pm B)$ formula and obtain an equation in tan xM1Using $\tan 60^\circ = \sqrt{3}$, obtain a horizontal equation in $\tan x$ in any correct form A1 Reduce the equation to the given form 3 A1 (ii) Solve the given quadratic for $\tan x$ M1

A1

A1

3

Q17.

Obtain a correct answer, e.g. $x = 21.6^{\circ}$

(0.377, 2.24).

Obtain a second answer, e.g. $x = 128.4^{\circ}$, and no others

[Ignore answers outside the given interval. Treat answers in radians as a misread

8 (i) Use $\sin(A + B)$ formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ M1

Use correct double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin \theta$ M1

Obtain a correct expression in terms of $\sin \theta$ in any form

Obtain the given identity

[SR: Give M1 for using correct formulae to express RHS in terms of $\sin \theta$ and $\cos 2\theta$, then M1A1 for expressing in terms of $\sin \theta$ and $\sin 3\theta$ only, or in terms

© Cambridge International Examinations 2014

of $\cos \theta$, $\sin \theta$, $\cos 2\theta$ and $\sin 2\theta$, then A1 for obtaining the given identity.]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	31

- (ii) Substitute for x and obtain the given answer B1 [1]
- (iii) Carry out a correct method to find a value of x M1
 Obtain answers 0.322, 0.799, -1.12
 [Solutions with more than 3 answers can only earn a maximum of A1 + A1.]

Q18.

- 4 (i) Either Use $\cos(A \pm B)$ correctly at least once State correct complete expansion A1

 Confirm given answer $\cos \theta$ with explicit use of $\cos 60^{\circ} = \frac{1}{2}$ A1

 SR: "correct" answer from sign errors in both expansions is B1 only

 Or Use correct $\cos A + \cos B$ formula

 State correct result e.g. $2\cos\left(\frac{2\theta}{2}\right)\cos\left(\frac{-120}{2}\right)$ A1

 Confirm given answer $\cos \theta$ with explicit use of $\cos(\pm 60^{\circ}) = \frac{1}{2}$ A1 [3]
 - (ii) State or imply $\frac{\cos 2x}{\cos x} = 3$ B1

 Obtain equation $2\cos^2 x 3\cos x 1 = 0$ B1

 Solve a three-term quadratic equation for $\cos x$ M1

 Obtain $\frac{1}{4}(3-\sqrt{17})$ or exact equivalent and, finally, no other A1 [4]