These are P2 questions(all variants) as the syllabus is same as P3:)

Q1.

4 (i) Show that the equation

$$\tan(45^{\circ} + x) = 4\tan(45^{\circ} - x)$$

can be written in the form

$$3\tan^2 x - 10\tan x + 3 = 0.$$
 [4]

(ii) Hence solve the equation

$$\tan(45^{\circ} + x) = 4\tan(45^{\circ} - x),$$

for
$$0^{\circ} < x < 90^{\circ}$$
. [3]

Q2.

- 4 (i) Express $3 \sin \theta + 4 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$3\sin\theta + 4\cos\theta = 4.5,$$

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$, correct to 1 decimal place.

(iii) Write down the least value of $3 \sin \theta + 4 \cos \theta + 7$ as θ varies. [1]

Q3.

2 (i) Prove the identity

$$\cos(x + 30^{\circ}) + \sin(x + 60^{\circ}) \equiv (\sqrt{3})\cos x.$$
 [3]

(ii) Hence solve the equation

$$\cos(x + 30^\circ) + \sin(x + 60^\circ) = 1,$$

for
$$0^{\circ} < x < 90^{\circ}$$
. [2]

Q4.

- 5 (i) Express $5 \cos \theta \sin \theta$ in the form $R \cos(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$5\cos\theta-\sin\theta=4,$$

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[4]

Q5.

5 Solve the equation $\sec x = 4 - 2\tan^2 x$, giving all solutions in the interval $0^\circ \le x \le 180^\circ$. [6]

Q6.

3 (i) Show that the equation $\tan(x + 45^\circ) = 6 \tan x$ can be written in the form

$$6\tan^2 x - 5\tan x + 1 = 0.$$
 [3]

(ii) Hence solve the equation $\tan(x + 45^\circ) = 6\tan x$, for $0^\circ < x < 180^\circ$. [3]

Q7.

- 8 (i) Express $4 \sin \theta 6 \cos \theta$ in the form $R \sin(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Solve the equation $4 \sin \theta 6 \cos \theta = 3$ for $0^{\circ} \le \theta \le 360^{\circ}$. [4]
 - (iii) Find the greatest and least possible values of $(4 \sin \theta 6 \cos \theta)^2 + 8 \text{ as } \theta \text{ varies}$. [2]

Q8.

- 8 (i) Express $4 \sin \theta 6 \cos \theta$ in the form $R \sin(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Solve the equation $4 \sin \theta 6 \cos \theta = 3$ for $0^{\circ} \le \theta \le 360^{\circ}$. [4]
 - (iii) Find the greatest and least possible values of $(4 \sin \theta 6 \cos \theta)^2 + 8 \cos \theta$ varies. [2]

Q9.

- 8 (i) Prove that $\sin^2 2\theta (\csc^2 \theta \sec^2 \theta) \equiv 4\cos 2\theta$. [3]
 - (ii) Hence
 - (a) solve for $0^{\circ} \le \theta \le 180^{\circ}$ the equation $\sin^2 2\theta (\csc^2 \theta \sec^2 \theta) = 3$, [4]
 - (b) find the exact value of $\csc^2 15^\circ \sec^2 15^\circ$. [2]

Q10.

4 (i) Given that $35 + \sec^2 \theta = 12 \tan \theta$, find the value of $\tan \theta$. [3]

(ii) Hence, showing the use of an appropriate formula in each case, find the exact value of

(a)
$$\tan(\theta - 45^{\circ})$$
, [2]

(b) $\tan 2\theta$. [2]

Q11.

4 (i) Express $9 \sin \theta - 12 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places. [3]

Hence

(ii) solve the equation
$$9 \sin \theta - 12 \cos \theta = 4 \text{ for } 0^{\circ} \le \theta \le 360^{\circ}$$
, [4]

(iii) state the largest value of k for which the equation $9 \sin \theta - 12 \cos \theta = k$ has any solutions. [1]

Q12.

7 (i) Express $5 \sin 2\theta + 2 \cos 2\theta$ in the form $R \sin(2\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]

Hence

(ii) solve the equation

$$5\sin 2\theta + 2\cos 2\theta = 4$$
,

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$,

(iii) determine the least value of $\frac{1}{(10\sin 2\theta + 4\cos 2\theta)^2}$ as θ varies. [2]

Q13.

8 (i) Prove the identity

$$\frac{1}{\sin(x - 60^\circ) + \cos(x - 30^\circ)} \equiv \csc x.$$
 [3]

[5]

(ii) Hence solve the equation

$$\frac{2}{\sin(x - 60^\circ) + \cos(x - 30^\circ)} = 3\cot^2 x - 2,$$
 for $0^\circ < x < 360^\circ$. [6]

Q14.

5 The angle x, measured in degrees, satisfies the equation

$$\cos(x - 30^{\circ}) = 3\sin(x - 60^{\circ}).$$

(i) By expanding each side, show that the equation may be simplified to

$$(2\sqrt{3})\cos x = \sin x.$$
 [3]

[3]

- (ii) Find the two possible values of x lying between 0° and 360° . [3]
- (iii) Find the exact value of cos 2x, giving your answer as a fraction.

Q15.

- 4 (i) Express $\cos \theta + (\sqrt{3}) \sin \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving the exact value of α .
 - (ii) Hence show that one solution of the equation

$$\cos \theta + (\sqrt{3}) \sin \theta = \sqrt{2}$$

is
$$\theta = \frac{7}{12}\pi$$
, and find the other solution in the interval $0 < \theta < 2\pi$. [4]

Q16.

3 Find the values of x satisfying the equation

$$3 \sin 2x = \cos x$$
,

for
$$0^{\circ} \le x \le 90^{\circ}$$
. [4]

Q17.

- 8 (i) Express $\cos \theta + \sin \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving the exact values of R and α .
 - (ii) Hence show that

$$\frac{1}{(\cos\theta + \sin\theta)^2} = \frac{1}{2}\sec^2(\theta - \frac{1}{4}\pi).$$
 [1]

- (iii) By differentiating $\frac{\sin x}{\cos x}$, show that if $y = \tan x$ then $\frac{dy}{dx} = \sec^2 x$. [3]
- (iv) Using the results of parts (ii) and (iii), show that

$$\int_0^{\frac{1}{2}\pi} \frac{1}{(\cos\theta + \sin\theta)^2} d\theta = 1.$$
 [3]

Q18.

- (i) Express 12 cos θ 5 sin θ in the form R cos(θ + α), where R > 0 and 0° < α < 90°, giving the exact value of R and the value of α correct to 2 decimal places.
 [3]
 - (ii) Hence solve the equation

$$12\cos\theta - 5\sin\theta = 10$$
,

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[4]

Q19.

4 (i) Prove the identity

$$\tan(x + 45^{\circ}) - \tan(45^{\circ} - x) \equiv 2 \tan 2x.$$
 [4]

(ii) Hence solve the equation

$$\tan(x + 45^{\circ}) - \tan(45^{\circ} - x) = 2$$
,

for
$$0^{\circ} \le x \le 180^{\circ}$$
. [3]

Q20.

- 6 (i) Express $8 \sin \theta 15 \cos \theta$ in the form $R \sin(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$8\sin\theta - 15\cos\theta = 14,$$

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[4]

Q21.

4 (i) Show that the equation

$$\sin(x+30^\circ) = 2\cos(x+60^\circ)$$

can be written in the form

$$(3\sqrt{3})\sin x = \cos x.$$
 [3]

(ii) Hence solve the equation

$$\sin(x + 30^\circ) = 2\cos(x + 60^\circ),$$

for
$$-180^{\circ} \le x \le 180^{\circ}$$
. [3]

Q22.

4 (i) Show that the equation $\sin(60^\circ - x) = 2\sin x$ can be written in the form $\tan x = k$, where k is a constant. [4]

(ii) Hence solve the equation
$$\sin(60^\circ - x) = 2\sin x$$
, for $0^\circ < x < 360^\circ$. [2]

Q23.

6 (i) Express $3\cos x + 4\sin x$ in the form $R\cos(x - \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, stating the exact value of R and giving the value of α correct to 2 decimal places. [3]

(ii) Hence solve the equation

$$3\cos x + 4\sin x = 4.5$$
,

giving all solutions in the interval $0^{\circ} < x < 360^{\circ}$.

[4]

Q24.

5 Solve the equation $8 + \cot \theta = 2 \csc^2 \theta$, giving all solutions in the interval $0^\circ \le \theta \le 360^\circ$. [6]

Q25.

- 6 (i) Express $2 \sin \theta \cos \theta$ in the form $R \sin(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$2\sin\theta - \cos\theta = -0.4$$
,

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[4]

Q26.

- 8 (i) Express $5 \cos \theta 3 \sin \theta$ in the form $R \cos(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$5\cos\theta - 3\sin\theta = 4,$$

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[4]

(iii) Write down the least value of $15\cos\theta - 9\sin\theta$ as θ varies.

[1]

Q27.

5 Solve the equation $5 \sec^2 2\theta = \tan 2\theta + 9$, giving all solutions in the interval $0^{\circ} \le \theta \le 180^{\circ}$. [6]

Q28.

3 Solve the equation

$$2\cos 2\theta = 4\cos \theta - 3,$$

for $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$. [4]

Q29.

- 8 (a) Given that $\tan A = t$ and $\tan(A + B) = 4$, find $\tan B$ in terms of t. [3]
 - (b) Solve the equation

$$2\tan(45^\circ - x) = 3\tan x,$$

giving all solutions in the interval $0^{\circ} \le x \le 360^{\circ}$.

[6]

Q30.

- 7 (i) Express $3 \cos \theta + \sin \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$3\cos 2x + \sin 2x = 2,$$

giving all solutions in the interval $0^{\circ} \le x \le 360^{\circ}$. [5]

Q31.

3 Solve the equation $2 \cot^2 \theta - 5 \csc \theta = 10$, giving all solutions in the interval $0^\circ \le \theta \le 360^\circ$. [6]

Q32.

2 Solve the equation $3 \sin 2\theta \tan \theta = 2$ for $0^{\circ} < \theta < 180^{\circ}$. [4]

Q33.

7 The angle α lies between 0° and 90° and is such that

$$2\tan^2\alpha + \sec^2\alpha = 5 - 4\tan\alpha.$$

(i) Show that

$$3\tan^2\alpha + 4\tan\alpha - 4 = 0$$

and hence find the exact value of $\tan \alpha$.

[4]

(ii) It is given that the angle β is such that $\cot(\alpha + \beta) = 6$. Without using a calculator, find the exact value of $\cot \beta$.

Q34.

7 (i) Express $5 \cos \theta - 12 \sin \theta$ in the form $R \cos(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]

(ii) Hence solve the equation
$$5\cos\theta - 12\sin\theta = 8$$
 for $0^{\circ} < \theta < 360^{\circ}$. [4]

(iii) Find the greatest possible value of

$$7 + 5\cos\frac{1}{2}\phi - 12\sin\frac{1}{2}\phi$$

as ϕ varies, and determine the smallest positive value of ϕ for which this greatest value occurs.

[4]

P3 (variant1 and 3)

Q1.

2 Solve the equation

$$\sin \theta = 2\cos 2\theta + 1$$
,

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[6]

Q2.

3 Solve the equation

$$\tan(45^\circ - x) = 2\tan x,$$

giving all solutions in the interval $0^{\circ} < x < 180^{\circ}$.

[5]

Q3.

9 (i) Prove the identity $\cos 4\theta + 4\cos 2\theta = 8\cos^4 \theta - 3$. [4]

(ii) Hence

(a) solve the equation
$$\cos 4\theta + 4\cos 2\theta = 1$$
 for $-\frac{1}{2}\pi \le \theta \le \frac{1}{2}\pi$, [3]

(b) find the exact value of
$$\int_0^{\frac{1}{4}\pi} \cos^4 \theta \, d\theta$$
. [3]

Q4.

4 (i) Show that the equation

$$\tan(60^{\circ} + \theta) + \tan(60^{\circ} - \theta) = k$$

can be written in the form

$$(2\sqrt{3})(1 + \tan^2 \theta) = k(1 - 3\tan^2 \theta).$$
 [4]

(ii) Hence solve the equation

$$\tan(60^\circ + \theta) + \tan(60^\circ - \theta) = 3\sqrt{3},$$

giving all solutions in the interval
$$0^{\circ} \le \theta \le 180^{\circ}$$
. [3]

Q5.

6 It is given that $\tan 3x = k \tan x$, where k is a constant and $\tan x \neq 0$.

(i) By first expanding tan(2x + x), show that

$$(3k-1)\tan^2 x = k-3.$$
 [4]

- (ii) Hence solve the equation $\tan 3x = k \tan x$ when k = 4, giving all solutions in the interval $0^{\circ} < x < 180^{\circ}$. [3]
- (iii) Show that the equation $\tan 3x = k \tan x$ has no root in the interval $0^{\circ} < x < 180^{\circ}$ when k = 2. [1]

Q6.

9 (i) Express $4\cos\theta + 3\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Give the value of α correct to 4 decimal places. [3]

(ii) Hence

(a) solve the equation
$$4\cos\theta + 3\sin\theta = 2$$
 for $0 < \theta < 2\pi$, [4]

(b) find
$$\int \frac{50}{(4\cos\theta + 3\sin\theta)^2} d\theta.$$
 [3]

Q7.

3 Solve the equation $\tan 2x = 5 \cot x$, for $0^{\circ} < x < 180^{\circ}$.

[5]

Q8.

3 Solve the equation

$$\cos(\theta + 60^{\circ}) = 2\sin\theta$$
,

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[5]

Q9.

- 8 (i) Express $(\sqrt{6})\cos\theta + (\sqrt{10})\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places. [3]
 - (ii) Hence, in each of the following cases, find the smallest positive angle θ which satisfies the equation

(a)
$$(\sqrt{6})\cos\theta + (\sqrt{10})\sin\theta = -4$$
, [2]

(b)
$$(\sqrt{6})\cos\frac{1}{2}\theta + (\sqrt{10})\sin\frac{1}{2}\theta = 3.$$
 [4]

Q10.

- 6 (i) Express $\cos x + 3 \sin x$ in the form $R \cos(x \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation $\cos 2\theta + 3\sin 2\theta = 2$, for $0^{\circ} < \theta < 90^{\circ}$. [5]

Q11.

- 3 (i) Express $8\cos\theta + 15\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation $8 \cos \theta + 15 \sin \theta = 12$, giving all solutions in the interval $0^{\circ} < \theta < 360^{\circ}$. [4]

Q12.

3 Solve the equation

$$\sin(\theta + 45^\circ) = 2\cos(\theta - 30^\circ),$$

giving all solutions in the interval $0^{\circ} < \theta < 180^{\circ}$.

[5]

Q13.

- 2 (i) Express $24 \sin \theta 7 \cos \theta$ in the form $R \sin(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places. [3]
 - (ii) Hence find the smallest positive value of θ satisfying the equation

$$24\sin\theta - 7\cos\theta = 17.$$
 [2]

Q14.

- 7 (i) Given that $\sec \theta + 2 \csc \theta = 3 \csc 2\theta$, show that $2 \sin \theta + 4 \cos \theta = 3$. [3]
 - (ii) Express $2 \sin \theta + 4 \cos \theta$ in the form $R \sin(\theta + \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]
 - (iii) Hence solve the equation $\sec \theta + 2 \csc \theta = 3 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$. [4]

Q15.

- 1 (i) Simplify $\sin 2\alpha \sec \alpha$. [2]
 - (ii) Given that $3\cos 2\beta + 7\cos \beta = 0$, find the exact value of $\cos \beta$. [3]

Q16.

3 (i) Show that the equation

$$\tan(x - 60^\circ) + \cot x = \sqrt{3}$$

can be written in the form

$$2\tan^2 x + (\sqrt{3})\tan x - 1 = 0.$$
 [3]

(ii) Hence solve the equation

$$\tan(x - 60^\circ) + \cot x = \sqrt{3},$$

for
$$0^{\circ} < x < 180^{\circ}$$
. [3]

Q17.

8 (i) By first expanding $\sin(2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta.$$
 [4]

[4]

- (ii) Show that, after making the substitution $x = \frac{2 \sin \theta}{\sqrt{3}}$, the equation $x^3 x + \frac{1}{6}\sqrt{3} = 0$ can be written in the form $\sin 3\theta = \frac{3}{4}$.
- (iii) Hence solve the equation

$$x^3 - x + \frac{1}{6}\sqrt{3} = 0$$
,

giving your answers correct to 3 significant figures.

Q18.

4 (i) Show that $\cos(\theta - 60^\circ) + \cos(\theta + 60^\circ) \equiv \cos\theta$. [3]

(ii) Given that
$$\frac{\cos(2x - 60^\circ) + \cos(2x + 60^\circ)}{\cos(x - 60^\circ) + \cos(x + 60^\circ)} = 3$$
, find the exact value of $\cos x$. [4]