Q1.

7 (i) State
$$\frac{dx}{d\theta} = 2 - 2\cos 2\theta$$
 or $\frac{dy}{d\theta} = 2\sin 2\theta$

Use $\frac{dy}{dx} = \frac{dy}{d\theta} + \frac{dx}{d\theta}$

Obtain answer $\frac{dy}{dx} = \frac{2\sin 2\theta}{2 - 2\cos 2\theta}$ or equivalent

Althorized Althorized

A1

4

Q3.

5	(i)	Differentiate using chain or quotient rule Obtain derivative in any correct form	M1 A1	
	(***)	Obtain given answer correctly	A1	3
		State $\frac{dx}{d\theta} = \sec^2 \theta$, or equivalent	B1	
		Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$	M1	
		Obtain given answer correctly	A1	3

© University of Cambridge International Examinations 2005

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – JUNE 2005	9709	2
i) State that $\theta = \frac{\pi}{6}$			B1
Obtain x-coordinate	e 1 + $\frac{1}{\sqrt{3}}$, or equivalent		B1
Obtain y-coordinate	$=\frac{2}{\sqrt{3}}$, or equivalent		B1

Q4.

3	State correct derivative 1 – 2sin x Equate derivative to zero and solve for x	MO	
	Obtain answer $x = \frac{1}{\varepsilon} \pi$	All	
	Carry out an appropriate method for determining the nature of a stationary point. Show that $x = \frac{1}{3}\pi$ is a maximum with no errors seen	M1	
	Obtain second answer $x = \frac{x}{6} \pm in$ range	AL	
	Show this is a minimum point [f.r. is on the incorrect derivative $1 + 2\sin x$]	AI/	7

Q5.

5 (i) State $2y \frac{dy}{dx}$ as the derivative of y^2 State $2y + 2x \frac{dy}{dx}$ or equivalent, as derivative of 2xyB1

Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero

M1

Obtain given relation y = -3x correctly

The M1 is dependent on at least one B1 being enned service.]

(ii) Carry out complete method for finding x^2 or y^2 M1

Obtain $x^2 = 1$ or $y^2 = 9$.

A1

Obtain point (1, -3).

Obtain second point (-1, 3).

Q6.

3 (i) State
$$\frac{dx}{dt} = 3 + \frac{1}{t-1}$$
 or $\frac{dy}{dt} = 2t$

Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$

Obtain $\frac{dy}{dx}$ in any correct form, e.g. $\frac{2t(t-1)}{3t-2}$

A1 [3]

(ii) Equate derivative to 1 and solve for t

Obtain roots 2 and $\frac{1}{2}$

State or imply that only $t = 2$ is admissible c.w.o.

Obtain coordinates $(6, 5)$

Q7.

6	(i)	Use product rule	M1*	
		Obtain correct derivative in any form, e.g. $(x-1)e^x$	A1	
		Equate derivative to zero and solve for x	M1* (dep)	
		Obtain $x = 1$	A1	
		Obtain $y = -e$	A1	[5]
	(ii)	Carry out a method for determining the nature of a stationary point	M1	
		Show that the point is a minimum point, with no errors seen	A1	[2]

Q8.

7 (i) State $2y \frac{dy}{dx}$ as derivative of y^2 , or equivalent **B**1 State $4y + 4x \frac{dy}{dx}$ as derivative of 4xy, or equivalent **B**1 Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$ M1 Obtain given answer correctly A1 [4] [The M1 is dependent on at least one of the B marks being obtained.] (ii) State or imply that the coordinates satisfy 2y - x = 0**B**1 Obtain an equation in x^2 (or y^2) M1 Solve and obtain $x^2 = 4$ (or $y^2 = 1$) A1 State answer (2, 1) A1 State answer (-2, -1)A1 [5] Q9. 4 State $\frac{dx}{d\theta} = 4 \cos \theta$ B₁ State $\frac{dy}{d\theta} = 4 \sin 2\theta$, or equivalent B1

M1

A1

A1√

[5]

Q10.

Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$

Obtain $\frac{dy}{dx}$ in any correct form, e.g. $\frac{\sin 2\theta}{\cos \theta}$

[The f.t. is on gradients of the form $k \sin 2\theta / \cos \theta$, or equivalent.]

Simplify and obtain answer $2 \sin \theta$

6 (i) State $2xy + x^2 \frac{dy}{dx}$ as derivative of x^2y **B**1 State $2y \frac{dy}{dx}$ as derivative of y^2 **B**1 Equate derivatives of LHS and RHS, and solve for $\frac{dy}{dx}$ M1Obtain given answer A1 [4] (ii) Substitute and obtain gradient $\frac{2}{5}$, or equivalent B1 Form equation of tangent at the given point (1, 2)M1Obtain answer 2x - 5y + 8 = 0, or equivalent A1 [3] [The M1 is dependent on at least one of the B marks being obtained.]

Q11.

(i) Use product rule
 Obtain correct derivative in any form
 Show that derivative is equal to zero when x = 3
 (ii) Substitute x = 1 into gradient function, obtaining 2e⁻¹ or equivalent
 State or imply required y-coordinate is e⁻¹
 Form equation of line through (l, e⁻¹) with gradient found (NOT the normal)
 M1

A1

[4]

Obtain equation in any correct form

Q12.

2 State $\frac{dx}{dt} = 3 + 2\cos 2t$ or $\frac{dy}{dt} = -4\sin 2t$ (or both)

Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ Obtain or imply $\frac{-4\sin 2t}{3 + 2\cos 2t}$ Substitute $\frac{1}{6}\pi$ to obtain $-\frac{1}{2}\sqrt{3}$ or exact equivalent

A1 [4]

Q13.

5 (i) Differentiate $\ln(x-3)$ to obtain $\frac{1}{x-3}$ B₁ Attempt to use product rule M1Obtain $\ln(x-3) + \frac{x}{x-3}$ or equivalent A₁ Substitute 4 to obtain 4 [4] A1 (ii) Use correct quotient or product rule M1Obtain correct derivative in any form, e.g. $\frac{(x+1)-(x-1)}{(x+1)^2}$ A1 Substitute 4 to obtain $\frac{2}{25}$ A1 [3]

Q14.

5 Obtain $4y\frac{dy}{dx}$ as derivative of $2y^2$ B1

Differentiate LHS term by term to obtain expression including at least one $\frac{dy}{dx}$ M1

Obtain $2x + 4y\frac{dy}{dx} + 5 + 6\frac{dy}{dx}$ A1

Substitute 2 and -1 to attempt value of $\frac{dy}{dx}$ M1

Obtain $-\frac{9}{2}$ A1

Obtain equation 9x + 2y - 16 = 0 or equivalent of required form

A1 [6]

Q15.

Attempt differentiation using product rule M1Obtain $8x \ln x + 4x$ A1 Equate first derivative to zero and attempt solution M1Obtain 0.607 A1 [5] Obtain -0.736 following their x-coordinate A1V (ii) Use an appropriate method for determining nature of stationary point M1Conclude point is a minimum (with no errors seen, second derivative = 8) A1 [2]

Q16.

5 (i) State $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t+1}$ **B**1 State $\frac{dy}{dt} = 2e^{2t} + 2$ **B**1 Attempt expression for $\frac{dy}{dx}$ M1Obtain $\frac{dy}{dx} = (2e^{2t} + 2)(t+1)$ or equivalent [4] A1 (ii) Substitute t = 0 and attempt gradient of normal M1Obtain $-\frac{1}{4}$ following their expression for $\frac{dy}{dx}$ A1√ Attempt to find equation of normal through point (0, 1) M1Obtain x + 4y - 4 = 0A1 [4]

Q17.

Use product rule to differentiate y M1 A1 Obtain correct derivative in any form Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$ M1Obtain given answer correctly A1 [4] (ii) Substitute t = 0 in $\frac{dy}{dx}$ and both parametric equations B1 Obtain $\frac{dy}{dx} = 2$ and coordinates (1, 0) B1Form equation of the normal at their point, using negative reciprocal of their $\frac{dy}{dx}$ M1State correct equation of normal $y = -\frac{1}{2}x + \frac{1}{2}$ or equivalent [4] A1

Q18.

5	(i)	State $3 \frac{dy}{dx}$ as derivative of 3y, or equivalent	B 1	
		State $4xy + 2x^2 \frac{dy}{dx}$ as a derivative of $2x^2y$, or equivalent	B1	
		Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	
		Obtain given answer correctly	A 1	[4]
	(ii)	Substitute $x = 2$ into given equation and solve for y	M1	
		Obtain gradient = $\frac{12}{5}$ correctly	A1	
		Form equation of the normal at their point, using negative recip of their $\frac{dy}{dx}$	M1	
		State correct equation of normal $5x + 12y + 2 = 0$ or equivalent	A1	[4]

Q19.

			1.7	
7	(i)	State $6y \frac{dy}{dx}$ as the derivative of $3y^2$	ВІ	
		State $\pm 2x \frac{dy}{dx} \pm 2y$ as the derivative of $-2xy$ (allow any combination of signs here)	BI ·	
	-	Equate attempted derivative of LHS to 0 (or 10) and solve for $\frac{dy}{dx}$	Ml	
		Obtain the given answer correctly	A1	4
		[The M1 is dependent on at least one of the B marks being earned.]		
	(ii)	[The M1 is dependent on at least one of the B marks being earned.] State or imply the points lie on $y-2x=0$ $cx/(y-2x)/(3y-x) = 0$	B1	0
	` '	Carry out complete method for finding one coordinate of a point of intersection of $y = kx$ with the		
		given curve	M1	
		Obtain $10x^2 = 10$ or $2\frac{1}{2}y^2 = 10$ or 2-term equivalent	AI	
		Obtain one correct point e.g. (1,2) or a values of or (or y) Obtain a second correct point e.g. (-1, -2)	ΑI	0
		Obtain a second correct point so (1.2)	A1 17	-0
		Obtain a second correct point e.g. (-1, -2)	AIN	50
			, ,	

Q20.

6 (i)	State A is $(4, 0)$ State B is $(0, 4)$		B1 B1
			[2]
(ii)	Use the product rule to obtain the first derivative Obtain derivative $(4 - x)e^x - e^x$, or equivalent Equate derivative to zero and solve for x Obtain answer $x = 3$ only	M1(d	A1
			[4]
(iii)	Attempt to form an equation in p e.g. by equating gradients of OP		
	and the tangent at P , or by substituting $(0, 0)$ in the equation of the tangent at P		M1
	Obtain equation in any correct form e.g. $\frac{4-p}{p} = 3-p$		A1
	Obtain 3-term quadratic $p^2 - 4p + 4 = 0$, or equivalent Attempt to solve a quadratic equation in p Obtain answer $p = 2$ only		A1 M1 A1
			[5]
Q21.			
5 (i)	Use the product rule to obtain the first derivative (must involve 2 terms)	M1	
	Obtain derivative $2x \ln x + x^2 \frac{1}{x}$ or equivalent	A1	
	Equate derivative to zero and solve for x	M1	
	Obtain answer $x = e^{-0.5}$ or $\frac{1}{\sqrt{e}}$ or equivalent (e.g. 0.61)	A1	4
(ii)	Determine nature of stationary point using correct second derivative (3 + 2lnx) or correct first derivative or equation of the curve		
	(3 y-values, central one y(exp (- 0.5)) Show point is a minimum completely correctly	M1 A1	2
Q22.			
4	(i) State $3y^2 \frac{dy}{dx}$ as derivative of y^0	ы	
	State $9y + 9x \frac{dy}{dx}$ as decryative of $9xy$	В1	
	Express $\frac{dy}{dx}$ to terms of π and y	MI	
	Obtain given answer correctly [The M1 is conditional on at least one B mark being obtained.]	Al	4
	(ii) Obtain gradient at (2, 4) in any correct qualimplated form	H)	
	Form the equation of the tangent at (2, 4) Obtain answer 5y -4x = 12, or equivalent	MI Al	3

Q23.

4	State derivative $2 - \sec^2 x$, or equivalent Equate derivative to zero and solve for x	B1 M1	
	Obtain $x = \frac{1}{4}\pi$, or 0.785 (± 45° gains A1)	A1	
	Obtain $x = -\frac{1}{4}\pi$, (allow negative of first solution)	A1√	
	Obtain corresponding y-values $\frac{1}{2}\pi - 1$ and $-\frac{1}{2}\pi + 1$, ± 0.571	A1	[5]

Q24.

6	At any stage, state the correct derivative of $e^{-\frac{1}{2}x}$ or $e^{\frac{1}{2}x}$	B 1	
	Use product or quotient rule	M1	
	Obtain correct first derivative in any form	A 1	
	Obtain correct second derivative in any form	B1 √	
	Equate second derivative to zero and solve for x	M1	
	Obtain $x = 4$	A1	
	Obtain $y = 4e^{-2}$, or equivalent	A1	[7]

Q25.

6	(i)	Use product rule	M1*	
		Obtain derivative in any correct form	A1	
		Equate derivative to zero and solve for x	M1(dep*)	
		Obtain $x = 1/e$, or exact equivalent	A1	
		Obtain $y = -1/e$, or exact equivalent	A1	[5]
	(ii)	Carry out complete method for determining the nature of a stationary point	M1	
		Show that at $x = 1/e$ there is a minimum point, with no errors seen	A1	[2]

Q26.

8 (i) EITHER: Substitute
$$x = 1$$
 and attempt to solve 3-term quadratic in y M1
Obtain answers $(1, 1)$ and $(1, -3)$ A1
 OR : State answers $(1, 1)$ and $(1, -3)$ B1 + B1 [2]

(ii) State $2y \frac{dy}{dx}$ as derivative of y^2 B1
State $2y + 2x \frac{dy}{dx}$ as derivative of $2xy$ B1
Substitute for x and y , and solve for $\frac{dy}{dx}$ M1
Obtain $\frac{dy}{dx} = 0$ when $x = 1$ and $y = 1$ A1
Obtain $\frac{dy}{dx} = -2$ when $x = 1$ and $y = -3$ A1 $\sqrt{2}$
Form the equation of the tangent at $(1, -3)$ M1
Obtain answer $2x + y + 1 = 0$ A1 [7]

Q27.

4 (i) State
$$\frac{dx}{dt} = e^{-t}$$
 or $\frac{dy}{dt} = e^{t} - e^{-t}$ B1

Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ M1

Obtain given answer correctly A1 [3]

(ii) Substitute $\frac{dy}{dx} = 2$ and use correct method for solving an equation of the form $e^{2t} = a$, where a > 0 M1

Obtain answer $t = \frac{1}{2} \ln 3$, or equivalent A1 [2]

Q28.

4 (i) State
$$\frac{dx}{dt} = \frac{1}{t-2}$$
 or $\frac{dy}{dt} = 1 - 9t^{-2}$

B1

Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$

Obtain given answer correctly

A1 [3]

(ii) Equate derivative to zero and solve for t

State or imply that $t = 3$ is admissible c.w.o., and note $t = -3$, 2 cases

Obtain coordinates (1, 6) and no others

A1 [3]

Q29.

8 (i) State
$$2y \frac{dy}{dx}$$
 as derivative of y^2 , or equivalent

State $2y + 2x \frac{dy}{dx}$ as derivative of $2xy$, or equivalent

B1

Substitute $x = -2$ and $y = 2$ and evaluate $\frac{dy}{dx}$

Obtain zero correctly and make correct conclusion

A1 [4]

(ii) Substitute $x = -2$ into given equation and solve

Obtain $y = -6$ correctly

Obtain $\frac{dy}{dx} = 2$ correctly

Form the equation of the tangent at $(-2, -6)$

Obtain answer $y = 2x - 2$

A1 [5]

Q30.

3 Obtain derivative of the form $k \sec^2 2x$, where k = 1 or $k = \frac{1}{2}$ Obtain correct derivative $\sec^2 2x$ Use correct method for solving $\sec^2 2x = 4$ Obtain answer $x = \frac{1}{6}\pi$ (or 0.524 radians)

Al

Obtain answer $x = \frac{1}{3}\pi$ (or 1.05 radians) and no others in range

Al [5]

Q31.

- 7 (i) Use product rule to differentiate y M1
 Obtain correct derivative in any form in t for y A1
 Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ M1
 Obtain given answer correctly A1 [4]
 (ii) State t = 0 M1
 State that $\frac{dy}{dx} = 0$ and make correct conclusion A1 [2]
 - (iii) Substitute t = -2 into equation for x or y M1 Obtain $(e^{-6}, 4e^{-2} + 3)$ A1 [2]

Q32.

- 6 (i) State $\frac{dx}{dt} = 4\sin\theta\cos\theta$ or equivalent (nothing for $\frac{dy}{dx} = 4\sec^2\theta$)

 B1

 Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$ Obtain given answer correctly

 A1 [3]
 - (ii) Substitute $\theta = \frac{\pi}{4}$ in $\frac{dy}{dx}$ and both parametric equations

 M1

 Obtain $\frac{dy}{dx} = 4$ and coordinates (2, 4)

 Form equation of tangent at their point

 State equation of tangent in correct form y = 4x 4M1

 [4]

Q33.

1 Obtain derivative of the form $\frac{k}{5x+1}$, where k=1, 5 or $\frac{1}{5}$ Obtain correct derivative $\frac{5}{5x+1}$ Substitute x=4 into expression for derivative and obtain $\frac{5}{21}$ A1

[3]

Q34.

8 (i) State $2y \frac{dy}{dx}$ as derivative of y^2 , or equivalent **B**1 Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$ M1 Obtain given answer correctly [3] A1 (ii) Equate gradient expression to -1 and rearrange M1 Obtain y = 2xA1 Substitute into original equation to obtain an equation in x^2 (or y^2) M1 Obtain $2x^2 - 3x - 2 = 0$ (or $y^2 - 3y - 4 = 0$) A1 Correct method to solve their quadratic equation M1 State answers $(-\frac{1}{2}, -1)$ and (2, 4)A1 [6]

Q35.

4 (i) State $\frac{dx}{dt} = \frac{-2}{1-2t}$ or $\frac{dy}{dt} = -2t^{-2}$ Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ Obtain given answer correctly

A1 [3]

(ii) Equate derivative to 3 and solve for tState or imply that t = -1 c.w.o.

Obtain coordinates (ln 3, -2)

A1 [3]

Q36.

2 Use quotient rule or product rule, correctly
Obtain correct derivative in any form
Equate derivative to zero and solve for xObtain $x = \frac{\pi}{8}$ A1 [4]

Q37.

			4		
7	(i)	State	$=4y\frac{dy}{dx}$ as derivative of $2y^2$, or equivalent	B1	
		State	$4y + 4x \frac{dy}{dx}$ as derivative of 4xy, or equivalent	B1	
		Equa	ate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	
		Obta	ain given answer correctly	A1	[4]
	(ii)	Obta Solv State	e or imply that the coordinates satisfy $3x - 2y = 0$ ain an equation in x^2 (or y^2) we and obtain $x^2 = 4$ (or $y^2 = 9$) the answer $(2, 3)$ the answer $(-2, -3)$	B1 M1 A1 A1	[5]
		State	e aliswet (-2, -3)	AI	[5]
Q38.					
3			erivative $e^{2x} - 5e^x + 4$ erivative to zero and carry out recognisable solution method for a quadratic in e^x	B1 M1	
			$= 1 \text{ or } e^x = 4$	A1	
			$= 0 \text{ and } x = \ln 4$	A1	
		-	propriate method for determining nature of at least one stationary point	M1	
	$\left(\frac{\mathrm{d}^2}{\mathrm{d}x}\right)$	$\frac{y}{2} = 2$	$e^{2x} - 5e^x$, when $x = 0$, $\frac{d^2y}{dx^2} = -(3)$, $x = \ln 4$, $\frac{d^2y}{dx^2} = +(12)$		
	Con	clude	maximum at $x = 0$ and minimum at $x = \ln 4$ (no errors seen)	A1	[6]
Q39.					
5		(i)	State $\frac{dx}{d\theta} = -2\sin 2\theta + \sin \theta$ or $\frac{dy}{d\theta} = 8\sin \theta \cos \theta$	B1	
			Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$	M1	
			Use $\sin 2\theta = 2\sin\theta \cos\theta$ Obtain given answer correctly	M1 A1	[4]
		(ii)	Equate derivative to -4 and solve for $\cos \theta$	M1	
		, ,	Obtain $\cos \theta = \frac{1}{2}$	A1	
			Obtain $x = -1$	A1	F41
			Obtain $y = 3$	A1	[4]

Q40.

2	Use quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Equate (numerator) of derivative to zero and solve for x	DM1	
	Obtain $x = \frac{1}{3}$	A1	
	Obtain $y = \frac{3}{2}$	A1	[5]

Q41.

(i) State $\frac{dx}{dt} = \frac{1}{2}t^{-\frac{1}{2}}$ or $\frac{dy}{dt} = \frac{3}{t}$ B₁ Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$ M1 Use y = 6 to find tObtain $t = e^2$ M1 A1 Obtaind $\frac{dy}{dx} = \frac{6}{e}$ A1 [5] (ii) Obtain x and form equation of the tangent at their point M1 Obtain correct equation for tangent $\left(y-6=\frac{6}{e}(x-(1+e))\right)$ A1 Show that tangent passes through (1, 0) by substitution [3] A1 Q42. (i) Differentiate to obtain form $k_1 \cos x + k_2 \sec^2 2x$ M1Obtain correct second term $2 \sec^2 2x$ A1 Obtain $3\cos x + 2\sec^2 2x$ and hence answer 5 [3] A1 (ii) Differentiate to obtain form $ke^{2x}(1+e^{2x})^{-2}$ M1Obtain correct $-12e^{2x}(1+e^{2x})^{-2}$ or equivalent (may be implied) A1 Obtain -3 A1 [3]

Q43.

(i) Obtain $3y + 3x \frac{dy}{dx}$ as derivative of 3xyB₁ Obtain $2y \frac{dy}{dx}$ as derivative of y^2 **B**1 State $4x + 3y + 3x \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$ **B**1 Substitute 2 and -1 to find gradient of curve (dependent on at least one B1) M1Form equation of tangent through (2,-1) with numerical gradient DM₁ (dependent on previous M1) Obtain 5x + 4y - 6 = 0 or equivalent of required form A1 [6] (ii) Use $\frac{dy}{dx} = 0$ to find relation between x and y (dependent on at least one B1 from part(i)) M1Obtain 4x + 3y = 0 or equivalent A1 Substitute for x or y in equation of curve M1 Obtain $-\frac{1}{9}y^2 = 3$ or $-\frac{2}{9}x^2 = 3$ or equivalent and conclude appropriately A1 [4]

Q44.

4 Obtain
$$\frac{dv}{dt} = \frac{2}{t+1}$$

Obtain $\frac{dv}{dt} = 4e^t$

B1

Use $\frac{dv}{dt} = \frac{dv}{dt} / \frac{dv}{dt}$ with $t = 0$ to find gradient

Obtain 2

Form equation of tangent through $(0, 4)$ with numerical gradient obtained from attempt to differentiate Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent of required form

A1

Obtain $2x - y + 4 = 0$ or equivalent or required form attempt to differentiate of the first and $2x - y + 4 = 0$ or equivalent

A1

Obtain $2x - y + 4 = 0$ or equivalent

A1

Obtain $3y + 6y + 6x \frac{dy}{dx}$ as derivative of $6xy$

Obtain $3x^2 + 6y + 6x \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0$ or equivalent

Substitute 1 and 2 to find value of gradient dependent on at least one B1

M1

Q47.

Obtain gradient $-\frac{15}{18}$ or $-\frac{5}{6}$

A1

[5]

3 Obtain $6y + 6x \frac{dy}{dx}$ as derivative of 6xyB1

Obtain $2y \frac{dy}{dx}$ as derivative of y^2 B1

Obtain $\frac{3}{x}$ and $\frac{d}{dx}(16) = 0$ Substitute 1 and 2 to find value of $\frac{dy}{dx}$ M1

Obtain value $\frac{2}{3}$ as gradient of normal following their value of $\frac{dy}{dx}$ Form equation of **normal** through (1, 2) with numerical gradient

M1

Obtain 2x - 3y + 4 = 0M1

[7]

P3 (variant1 and 3)

Q1.

9 (i) Use quotient or product rule to differentiate (1-x)/(1+x)M1 Obtain correct derivative in any form A1 Use chain rule to find $\frac{dy}{dx}$ M1Obtain a correct expression in any form A1 Obtain the gradient of the normal in the given form correctly A1 [5] (ii) Use product rule M1 Obtain correct derivative in any form A1 Equate derivative to zero and solve for x M1Obtain $x = \frac{1}{2}$ [4] A1

Q2.

2 (i) Obtain $\frac{k \cos 2x}{1 + \sin 2x}$ for any non-zero constant k M1
Obtain $\frac{2 \cos 2x}{1 + \sin 2x}$ A1 [2]

(ii) Use correct quotient or product rule M1
Obtain $\frac{x \sec^2 x - \tan x}{x^2}$ or equivalent A1 [2]

Q3.

- 5 (i) Use at least one of $e^{2x} = 9$, $e^{y} = 2$ and $e^{2y} = 4$ Obtain given result 58 + 2k = cAG

 B1
 B1
 [2]
 - (ii) Differentiate left-hand side term by term, reaching $ae^{2x} + be^{y} \frac{dy}{dx} + ce^{2y} \frac{dy}{dx}$ M1

 Obtain $12e^{2x} + ke^{y} \frac{dy}{dx} + 2e^{2y} \frac{dy}{dx}$ A1

 Substitute (ln 3, ln 2) in an attempt involving implicit differentiation at least once, where RHS = 0

 Obtain 108 12k 48 = 0 or equivalent A1

A1

[5]

Obtain k = 5 and c = 68

Q4.

Use correct quotient or product rule M1

Obtain correct derivative in any form, e.g. $-\frac{3 \ln x}{x^4} + \frac{1}{x^4}$ A1

Equate derivative to zero and solve for x an equation of the form $\ln x = a$, where a > 0 M1

Obtain answer $\exp(\frac{1}{3})$, or 1.40, from correct work A1 [4]

Q5.

- 6 (i) Obtain $2y \frac{dy}{dx}$ as derivative of y^2 B1

 Obtain $-4y 4x \frac{dy}{dx}$ as derivative of -4xy B1

 Substitute x = 2 and y = -3 and find value of $\frac{dy}{dx}$ (dependent on at least one B1 being earned and $\frac{d(45)}{dx} = 0$) M1

 Obtain $\frac{12}{7}$ or equivalent A1 [4]
 - (ii) Substitute $\frac{dy}{dx} = 1$ in an expression involving $\frac{dy}{dx}$, x and y and obtain ay = bx M1

 Obtain y = x or equivalent

 Uses y = x in original equation and demonstrate contradiction

 A1 [3]

Q6.

3 Obtain
$$\frac{dx}{d\theta} = 2\cos 2\theta - 1$$
 or $\frac{dy}{d\theta} = -2\sin 2\theta + 2\cos \theta$, or equivalent

B1

Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$

M1

Obtain $\frac{dy}{dx} = \frac{-2\sin 2\theta + 2\cos \theta}{2\cos 2\theta - 1}$, or equivalent

At any stage use correct double angle formulae throughout

M1

[5]

A1

Obtain the given answer following full and correct working

Q7.

- 4 (i) Use correct quotient or product rule

 Obtain correct derivative in any form, e.g. $\frac{2e^{2x}}{x^3} \frac{3e^{2x}}{x^4}$ Equate derivative to zero and solve a 2-term equation for non-zero xM1

 Obtain $x = \frac{3}{2}$ correctly

 A1 [4]
 - (ii) Carry out a method for determining the nature of a stationary point, e.g. test derivative either side

 Show point is a minimum with no errors seen

 M1

 A1 [2]

Q8.

5 (i) Use correct quotient rule or equivalent

Obtain
$$\frac{(1+e^{2x})2x-(1+x^2)2e^{2x}}{(1+e^{2x})^2}$$
 or equivalent

A1

Substitute $x = 0$ and obtain $-\frac{1}{2}$ or equivalent

A1 [3]

(ii) Differentiate y^3 and obtain $3y^2\frac{dy}{dx}$

Differentiate $5xy$ and obtain $5y+5x\frac{dy}{dx}$

B1

Obtain
$$6x^2 + 5y + 5x \frac{dy}{dx} + 3y^2 \frac{dy}{dx} = 0$$
 B1

© Cambridge International Examinations 2013

e y			
Page 5	Mark Scheme	Syllabus	Paper
2. 19899	GCE AS/A LEVEL – May/June 2013	9709	31

Substitute
$$x = 0$$
, $y = 2$ to obtain $-\frac{5}{6}$ or equivalent following correct work B1 [4]

Q9.

4	Use product or quotient rule	M1				
	Obtain derivative in any correct form	A1				
	Equate derivative to zero and obtain an equation of the form $a \sin 2x = b$, or a quadratic in tan 2	r,				
	$\sin^2 x$, or $\cos^2 x$					
	Carry out correct method for finding one angle M1(d					
	Obtain answer, e.g. 0.365	A1				
	Obtain second answer 1.206 and no others in the range (allow 1.21)	A1	[6]			
	[Ignore answers outside the given range.]					
	[Treat answers in degrees, 20.9° and 69.1°, as a misread.]					

Q10.

2	Use of correct quotient or product rule to differentiate x or t		M1	
	Obtain correct $\frac{3}{(2t+3)^2}$ or unsimplified equivalent		A1	
	Obtain $-2e^{-2t}$ for derivative of y		B1	
	Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ or equivalent		M1	
	Obtain –6	cwo	A1	[5]
	Alternative: Eliminate parameter and attempt differentiation $y = e^{\frac{-6x}{1-2x}}$		B1	
	Use correct quotient or product rule		M1	
	Use chain rule		M1	
	Obtain $\frac{dy}{dx} = \frac{-6}{(1-2x)^2} e^{\frac{-6x}{1-2x}}$		A1	
	Obtain –6	cwo	A1	

Q11.

2	EITHER:	Use chain rule	M1	
		obtain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent	A1	
		obtain $\frac{dy}{dt} = -6\cos^2 t \sin t$, or equivalent	A1	
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1	
		Obtain final answer $\frac{dy}{dx} = -\cos t$	A1	
	OR:	Express y in terms of x and use chain rule	M1	
		Obtain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent	A1	
		Obtain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent	A1	
		Express derivative in terms of t	M1	
		Obtain final answer $\frac{dy}{dx} = -\cos t$	A1	[5]

Q12.

2	Use correct quotient or product rule or equivalent	M1	
	Obtain $\frac{(1+e^{2x}).2e^{2x}-e^{2x}.2e^{2x}}{(1+e^{2x})^2}$ or equivalent	A1	
	Substitute $x = \ln 3$ into attempt at first derivative and show use of relevant logarithm property at least once in a correct context	M1	
	Confirm given answer $\frac{9}{50}$ legitimately	A1	[4]

Q13.

8	(i)	Differentiate y to obtain $3\sin^2 t \cos t - 3\cos^2 t \sin t$ o.e.	B1	See
		Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dt}{dx}$	M1	
		Obtain given result $-3\sin t \cos t$	Alcwo	[3]
	(ii)	Identify parameter at origin as $t = \frac{3}{4}\pi$	B1	
		Use $t = \frac{3}{4}\pi$ to obtain $\frac{3}{2}$	B1	[2]
	(iii)	Rewrite equation as equation in one trig variable e.g. $sin2t = -\frac{2}{3}$, $9 sin^4 x - 9 sin^2 x + 1 = 0$, $tan^2 x + 3 tan x + 1 = 0$	B1	
		Find at least one value of t from equation of form $\sin 2t = k$ o.e.	M1	
		Obtain 1.9	A1	
		Obtain 2.8 and no others	A1	[4]

Q14.

7	(i)	EITHER	: State or imply $\frac{1}{x} + \frac{1}{y} \frac{1}{dx}$ as derivative of $\ln xy$, or equivalent	В1	
			State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3 , or equivalent	B1	
			Equate derivative of LHS to zero and solve for dx Obtain the given answer	M1 A1	
		OR	Old in the control of	В1	
			State or imply $3y^2 \frac{dy}{dx} \exp(1+y^3)$ and state or imply $y+x$ decreased derivative of xy y + x = x + x + x + x + x + x + x + x + x	B1	
			Equate derivatives and solve for $\frac{d\mathbf{v}}{d\mathbf{x}}$ Obtain the given answer [The M1 is dependent on at least one of the B marks being earned]	M1 A1	[4]
	(ii)	Obtain y	enominator to zero and solve for $y = 0.693$ only the found value in the equation and solve for x	M1* A1 M1(d	lan*)
			= 5.47 only	A1	[4]
Q15					
3	(i)	Either U	Jse correct quotient rule or equivalent to obtain		
		-	$\frac{dx}{dt} = \frac{4(2t+3)-8t}{(2t+3)^2}$ or equivalent	B1	
		(Obtain $\frac{dy}{dt} = \frac{4}{2t+3}$ or equivalent	B1	
		Ţ	Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ or equivalent	M1	

	Obtain $\frac{1}{3}(2t+3)$ or similarly simplified equivalent	Al
<u>Or</u>	Express t in terms of x or y e.g. $t = \frac{3x}{4-2x}$	B1
	(6)	

Obtain Cartesian equation e.g.
$$y = 2 \ln \left(\frac{6}{2 - x} \right)$$
 B1

Differentiate and obtain
$$\frac{dy}{dx} = \frac{2}{2-x}$$
 M1

Obtain
$$\frac{1}{3}(2t+3)$$
 or similarly simplified equivalent A1 [4]

(ii) Obtain
$$2t = 3$$
 or $t = \frac{3}{2}$ B1

Substitute in expression for $\frac{dy}{dx}$ and obtain 2 B1 [2]

Q16.

1	Use correct quotient or product rule	M1	
	Obtain correct derivative in any form	A1	
	Justify the given statement	A1	[3]

Q17.

4 Use correct product or quotient rule at least once
$$Obtain \frac{dx}{dt} = e^{-t} \sin t - e^{-t} \cos t \text{ or } \frac{dy}{dt} = e^{-t} \cos t - e^{-t} \sin t, \text{ or equivalent}$$

$$Use \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$

$$Obtain \frac{dy}{dx} = \frac{\sin t - \cos t}{\sin t + \cos t}, \text{ or equivalent}$$

$$EITHER: \text{ Express } \frac{dy}{dx} \text{ in terms of } \tan t \text{ only}$$

$$Show \text{ expression is identical to } \tan \left(t - \frac{1}{4}\pi\right)$$

$$OR: \text{ Express } \tan \left(t - \frac{1}{4}\pi\right) \text{ in terms of } \tan t$$

$$Show \text{ expression is identical to } \frac{dy}{dx}$$

$$A1 \quad [6]$$

Q18.

4 Differentiate
$$y^3$$
 to obtain $3y^2 \frac{dy}{dx}$

Use correct product rule at least once

*M1

Obtain $6e^{2x}y + 3e^{2x} \frac{dy}{dx} + e^x y^3 + 3e^x y^2 \frac{dy}{dx}$ as derivative of LHS

Equate derivative of LHS to zero, substitute $x = 0$ and $y = 2$ and find value of $\frac{dy}{dx}$

M1(d*M)

Obtain $-\frac{4}{3}$ or equivalent as **final answer**

A1 [5]

Q19.

3	Obtain $\frac{2}{2t+3}$ for derivative of x	B1	
	Use quotient of product rule, or equivalent, for derivative of y	M1	
	Obtain $\frac{5}{(2t+3)^2}$ or unsimplified equivalent	A1	
	Obtain $t = -1$	B1	
	Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ in algebraic or numerical form	M1	
	Obtain gradient $\frac{5}{2}$	A1	[6]

Q20.

10 (i) Use of product or quotient rule M1 Obtain $-5e^{-\frac{1}{2}x} \sin 4x + 40e^{-\frac{1}{2}x} \cos 4x$ A1 Equate $\frac{dy}{dx}$ to zero and obtain $\tan 4z = k$ or R $\cos(4x \pm \alpha)$ MI Obtain $\tan 4x = 8$ or $\sqrt{65} \cos \left(4x \pm \tan^{-1} \frac{1}{8} \right)$ A1 Obtain 0.362 or 20.7° A1 Obtain 1.147 or 65.7° Al [6] (ii) State or imply that x-coordinates of T_n are increasing by $\frac{1}{4}\pi$ or 45° Bl Attempt solution of inequality (or equation) of form $x_1 + (n-1)k\pi$. 25 M1 Obtain $n > \frac{4}{\pi} (25 - 0.362) + 1$, following through on their value of x_1 A1√ Al [4] Q21. Obtain correct derivative of RHS in any form B₁ Obtain correct derivative of LHS in any form B1 Set $\frac{dy}{dx}$ equal to zero and obtain a horizontal equation M1Obtain a correct equation, e.g. $x^2 + y^2 = 1$, from correct work A1 By substitution in the curve equation, or otherwise, obtain an equation in x^2 or y^2 M1 Obtain $x = \frac{1}{2}\sqrt{3}$ A1

Q22.

Obtain $y = \frac{1}{2}$

(i) Use chain rule correctly at least once M1Obtain either $\frac{dx}{dt} = \frac{3\sin t}{\cos^4 t}$ or $\frac{dy}{dt} = 3\tan^2 t \sec^2 t$, or equivalent A1 Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ M1Obtain the given answer A1 [4] (ii) State a correct equation for the tangent in any form B₁ Use Pythagoras M1Obtain the given answer A1 [3]

7

A1

Q23.

2 Use correct product rule or correct chain rule to differentiate y M1

Use
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$$
 M*1

Obtain
$$\frac{-4\cos\theta\sin^2\theta + 2\cos^3\theta}{\sec^2\theta}$$
 or equivalent A1

Express
$$\frac{dy}{dx}$$
 in terms of $\cos \theta$ DM*1

Confirm given answer
$$6\cos^5\theta - 4\cos^3\theta$$
 legitimately A1 [5]