Q1.

	1 EITH	ER: State or imply non-modular inequality $(x - 4)^c > (x + 1)^2$, or corresponding equation Expand and solve a linear inequality, or equivalent Obtain critical value $1\frac{1}{2}$ State correct answer $x < 1\frac{1}{2}$ (allow \leq)	B1 M1 A1 A1	
	OR:	State a correct linear equation for the critical value e.g. $4 - x = x + 1$ Solve the linear equation for x Obtain critical value $1\frac{1}{2}$, or equivalent State correct answer $x < 1\frac{1}{2}$	B1 M1 A1 A1	
	OR:	State the critical value $1\frac{1}{2}$, or equivalent, from a graphical method or inspection or by solving a linear inequality State correct answer $x < 1\frac{1}{2}$	B3 B1	
Q2.			[4]	
1	EITHER	State or imply non-modular inequality $x^2 > (3x - 2)^2$, or corresponding	M1	
		equation Expand and make reasonable solution attempt at 2- or 3-term quadratic, or equivalent	M1	
		Obtain critical values ½ and 1	A1	
		State correct answer $\frac{1}{2} < x < 1$	A1	
	OR	State one correct linear equation for a critical value	M1	
		State two equations separately	A1	
		Obtain critical values ½ and 1	A1	
		State correct answer $\frac{1}{2} < x < 1$	A1	
	OR	State one critical value from a graphical method or inspection or by solving a linear inequality	B1	
		State the other critical value correctly	B2	
		State correct answer $\frac{1}{2} < x < 1$	B1	
Q3.				
- 2	province	State or imply non-modular inequality $(2x-7)^2 \times 3^2$, or corresponding equation	MI	
1	ennen	Obtain critical values 2 and 5	ΔI	
		State correct answer x=2, x>5	AI	
	OR.	State one critical value, e.g. $x = 5$, by solving a linear equation (or inequality) or from it	101	
		graphical method ar by inspection	BI	
		State the other critical value correctly State correct answer $x < 2$, $x > 5$	BI	1
		religionaries induses & _ef g_a.		

Q4.

1	EITHER	State or imply non-modular inequality $(x-3)^2 > (x+2)^2$, or		
		corresponding equation Expand and solve a linear inequality, or equivalent	M1 M1	
			IVII	
		Obtain critical value $\frac{1}{2}$	A1	
		State correct answer $x < \frac{1}{2}$ (allow $x \le \frac{1}{2}$)	A1	
	OR	State a correct linear equation for the critical value, e.g. $3 - x = x + 2$,		
	O.C.	or corresponding correct inequality, e.g. $-(x-3) > (x+2)$	M1	
		Solve the linear equation, or inequality	M1	
		Obtain critical value $\frac{1}{2}$	A1	
		State correct answer $x < \frac{1}{2}$	A1	
	OR	Make recognisable sketches of both $y = x-3 $ and $y = x+2 $ on a		
		single diagram	B1	
		Obtain a critical value from the intersection of the graphs	M1	
		Obtain critical value $\frac{1}{2}$	A1	
		State final answer $x < \frac{1}{2}$	A1	[4]
Q5.				
21	a se seeds a			
1	EITHER	State or imply non-modular inequality $(3x - 1)^2 < 2^2$, or corresponding equation or pair of linear equations	M1	
		Obtain critical values $-\frac{1}{3}$ and 1	A1	
		State correct answer $-\frac{1}{3} < x < 1$	A1	
		3		
	OR	State one critical value, e.g. $x = 1$, by solving a linear equation (or	D.I	
		inequality) or from a graphical method or by inspection State the other critical value correctly	B1 B1	
		State correct answer $-\frac{1}{3} < x < 1$	B1	[3]
Q6.				
2	CITUED.C	tate or imply non-modular inequality $(3x + 2)^2 < x^2$, or corresponding quadrates	.if	
2	O.	r pair of linear equations $3x + 2 = \pm x$	M1	
		fake reasonable solution attempt at a 3-term quadratic, or solve two linear en	-	
		Obtain critical values $x = -1$ and $x = -\frac{1}{2}$	A1	
		tate answer $-1 < x < -\frac{1}{2}$	A1	
		Obtain the critical value $x = -1$ from a graphical method or by inspection, or linear equation or inequality	by solving B1	
		bbtain the critical value $x = -\frac{1}{2}$ similarly	B2	
		tate answer $-1 < x < -\frac{1}{2}$	B1	[4]

Q7.

1	EITHER:	State or imply non-modular inequality $(2x-3)^2 > 5^2$, or corresponding equation or pair of linear equations Obtain critical values -1 and 4 State correct answer $x < -1, x > 4$	M1 A1 A1	
	OR:	State one critical value, e.g. $x = 4$, having solved a linear equation (or inequality) or from a graphical method or by inspection State the other critical value correctly State correct answer $x < -1$, $x > 4$	B1 B1 B1	[3]
Q8.				
3	EITHE	R State or imply non-modular inequality $(2x-1)^2 < (x+4)^2$, or corresponding equation or pair of linear equations Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values -1 and 5 State correct answer $-1 < x < 5$	M1 M1 A1	[4]
	OR	Obtain one critical value, e.g. $x = 5$, by solving a linear equation (or inequality) or from a graphical method or by inspection Obtain the other critical value similarly State correct answer $-1 < x < 5$	B1 B2 B1	
Q9.				
1	EITHER	Attempt to square both sides obtaining three terms on each side Attempt solution of three-term quadratic equation Obtain $5x + 4x - 9 = 0$ and hence $-\frac{9}{5}$ and 1	M1 M1 A1	
	OR	Obtain value 1 from graphical method, inspection or linear equation Obtain value $-\frac{9}{5}$ similarly	B1 B2	[3]
Q10	•			
1	<u>Or</u> :	Obtain value $x^3 = 27$ from inspection, equation, Obtain value $x^3 = 1$ similarly Obtain $x = 1$ and $x = 3$ Attempt to square both sides obtaining 3 terms on LHS Attempt solution for x^3 of 3-term quadratic Obtain $x^3 = 1$ and $x^3 = 27$ Obtain $x = 1$ and $x = 3$	B1 B2 B1 M1 DM1 A1	[4]

Q11.

1	<u>Either</u> :	State or imply non-modular inequality $(x + 3)^2 < (2x + 1)^2$ or corresponding equation or pair of linear equations Attempt solution of 3-term quadratic or of 2 linear equations Obtain critical values $-\frac{4}{3}$ and 2	B1 M1 A1	
		State answer $x < -\frac{4}{3}, x > 2$	A1	
	Or:	Obtain critical value $x = 2$ from graphical method, inspection, equation	B 1	
	_	Obtain critical value $x = -\frac{4}{3}$ similarly	B2	
		State answer $x < -\frac{4}{3}, x > 2$	B 1	[4]
Q1	2.			
1	Either	State or imply non-modular equation $(2^x - 7)^2 = 1^2$, or corresponding pair of equations	M1	
		Obtain $2^x = 8$ and $2^x = 6$	A1	
		State answer 3	B1	
		Use logarithmic method to solve an equation of the form $2^x = k$, where $k > 0$	M1	
		State answer 2.58	A1	
	Or	State or imply one value for 2^x , e.g. 8, by solving an equation or by inspection	B1	
		State answer 3	B 1	
		State second value for 2^x	B 1	
		Use logarithmic method to solve an equation of the form $2^x = k$, where $k > 0$	M1	
		State answer 2.58	A1	[5]
Q1	3.			
2	Either	State or imply non-modular inequality $(x-8)^2 > (2x-4)^2$, or		
		corresponding equation or pair of linear equations	M1	
		Make reasonable solution attempt at a quadratic, or solve two linear equations	M1	
		Obtain critical values 4 and –4	A1	
		State correct answer $-4 < x < 4$	A1	
	Or	Obtain one critical value, e.g. $x = 4$, by solving a linear equation (or inequality) or		
		from a graphical method or by inspection	B 1	
		Obtain the other critical value similarly	B2	
		State correct answer $-4 < x < 4$	B1	[4]

Q14.

1	EITHER:	State or imply non-modular inequality $(2x-1)^2 < (3x)^2$, or corresponding equation Expand and make reasonable solution attempt at $2/\sqrt{10}$ 3-term quadratic, or equivalent		B1 M1	0
		Obtain critical values -1 and $\frac{1}{5}$		A1	
		State correct answer $x < -1$, $x > \frac{1}{5}$		Al	
	OR:	State to correct equation for a critical value e.g. $2x - 1 = 3x$		MI	0
		State two relevant equations separately e.g. $2x - 1 = 3x$ and $2x - 1 = -3x$		A1	
	7.0	Obtain critical values -1 and $\frac{1}{5}$		A1	
		State correct answer $x < -1$, $x > \frac{1}{5}$	3	A1	1189
	OR:	State one critical value (probably $x = -1$), from a graphical method or by inspection or by			54
*		solving a linear inequality		BI	
		State the other critical value correctly		B2	
		State correct answer $x < -1$, $x > \frac{1}{5}$		B1	.4
		[The answer $\frac{1}{5} < x < -1$ scores B0.]			
715					

Q15.

1	EITHER:	State or imply non-modular inequality e.g. $-2 < 8-3x < 2$, or $(8-3x)^2 < 2^2$, or corresponding equation or pair of equations	M1
		Obtain critical values 2 and $3\frac{1}{3}$	A1
		State correct answer $2 < x < 3\frac{1}{3}$	A1
	OR:	State one critical value (probably $x = 2$), from a graphical method or by	ъ.
		inspection or by solving a linear equality or equation State the other critical value correctly	B1 B1
		State correct answer $2 < x < 3\frac{1}{3}$	В1
			[3]

Q16.

1		State or imply non-modular inequality $(x + 1)^2 > x^2$ or corresponding equation or linear equation $x + 1 = -x$	ng B1	
	3 · PANY (1984)	Obtain critical value $-\frac{1}{2}$	B1	
		State answer $x > -\frac{1}{2}$	B1	
	OR:	Obtain critical value $-\frac{1}{2}$ by solving a linear inequality or by		
		graphical method or inspection	B2	
		State answer $x > -\frac{1}{2}$	B1	3
	[For 2x +	$1 > 0, x > +\frac{1}{2}$, or similar reasonable method]	M1	

Q17.

		1	Use logarithms to obtain a linear inequality in ϵ , or corresponding equation Obtain critical value 3.11, or exact equivalent Obtain univer $\epsilon > 3.11$	Mi Al	^	- 2
Q18	8.					
1		EITHE	R: State or imply non-modular inequality $(2x-1)^2 > x^2$ or corresponding quadratic equation or pair of linear equations $2x-1=\pm x$. Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	MI MI		
			Obtain critical values $x = 1$ and $x = \frac{1}{3}$	AL		
			State answer $x < \frac{1}{3}, x > 1$	A1		
		C	Obtain critical value x = 1 from a graphical method, or by inspection, or by solving a linear inequality or linear equation. Obtain the critical value x = \(\frac{1}{3} \) similarly.	B1 B2		
			State answer $x < \frac{1}{3}$, $x > 1$	Bi		į
Q1 ⁹	9. (i)		ain critical values 4 and 6 e answer $4 < y < 6$	B1 B1	[2]	
	(ii)	Obt	correct method for solving an equation of the form $3^x = a$, where $a > 0$ ain one critical value, i.e. either 1.26 or 1.63 e answer $1.26 < x < 1.63$	M1 A1 A1	[3]	
Q2(0.					
1	EIT	HER:	State or imply non-modular inequality $(x-3)^2 > (2x)^2$ or corresponding quadratic			
			equation or pair of linear equations $(x-3)=\pm 2x$ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations Obtain critical values $x=1$ and $x=-3$ State answer $-3 < x < 1$	M1 M1 A1 A1		
		OR:	Obtain critical value $x = -3$ from a graphical method, or by inspection, or by solving a linear inequality or linear equation Obtain the critical value $x = 1$ similarly State answer $-3 < x < 1$	B1 B2 B1	[4	4]

Q21.

1	EITHER:	Obtain a non-modular inequality from $(2x+3)^2 < (x-3)^2$, or corresponding		
		quadratic equation, or pair of linear equations $2x + 3 = \pm(x - 3)$	M1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear		
		equations	M1	
		Obtain critical values $x = -6$ and $x = 0$	A1	
		State answer $-6 < x < 0$	A1	
	OR:	obtain the critical value $x = -6$ from a graphical method or by inspection, or by		
		solving a linear equation or inequality	B 1	
		Obtain the critical value $x = 0$ similarly	B2	
		State answer $-6 < x < 0$	B1	[4]

Q22.

1	EITHER:	Obtain a non-modular inequality from $(x + 3)^2 > (2x)^2$, or corresponding		
		equation, or pair of linear equations $(x + 3) = \pm 2x$	M1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear		
		equations	M1	
		Obtain critical values $x = -1$ and $x = 3$	A1	
		State answer $-1 < x < 3$	A1	
	OR:	Obtain critical value $x = 3$ from a graphical method, or by inspection, or by solving		
		a linear inequality or linear equation	B1	
		Obtain the critical value $x = -1$ similarly	B2	
		State answer $-1 < x < 3$	B1	[4]

Q23.

1	EITHER:	State or imply non-modular inequality $(x+1)^2 > (x-4)^2$, or corresponding		
		equation or pair of linear equations	M1	
		Obtain critical value $\frac{3}{2}$	A1	
		State correct answer $x > \frac{3}{2}$	A 1	
	OR:	State a correct linear equation for the critical value, e.g. $x + 1 = -x + 4$, or corresponding correct linear inequality, e.g. $x + 1 > -(x - 4)$	M1	
		Obtain critical value $\frac{3}{2}$	A1	
		State correct answer $x > \frac{3}{2}$	A1	[3]

Q24.

1	EITHER	State or imply non-modular inequality $(3x + 1)^2 > 8^2$, or corresponding equation or	M1	
		pair of linear equations	IVII	
		Obtain critical values $\frac{7}{3}$ or -3	A1	
		State correct answer $x < -3$ or $x > \frac{7}{3}$	Al	
	OR	State one critical value, e.g. $x = -3$, by solving a linear equation (or inequality) or from a graphical method or by inspection State the other critical value correctly	B1 B1	
		State correct answer $x < -3$ or $x > \frac{7}{3}$	B1	[3]
Q25.				
1	EITHER	State or imply non-modular inequality $(4 - 5x)^2 < 3^2$, or corresponding equation		
		or pair of linear equations	M1	
		Obtain critical values $\frac{1}{5}$ and $\frac{7}{5}$	A 1	
		State correct answer $\frac{1}{5} < x < \frac{7}{5}$	A1	
	OR	State one critical value, e.g. $x = \frac{1}{5}$, by solving a linear equation (or inequality)		
		or from a graphical method or by inspection	B 1	
		State the other critical value correctly	B1	
		State correct answer $\frac{1}{5} < x < \frac{7}{5}$	B 1	[3]

Q26.

State or imply non-modular inequality $(x+2)^2 > \left(\frac{1}{2}x-2\right)^2$, or corresponding **EITHER** equation or pair of linear equations M1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear M1equations Obtain critical values -8 and 0 A1 State correct answer x < -8 or x > 0A1 OR Obtain one critical value, e.g. x = -8, by solving a linear equation (or inequality) or **B**1 from a graphical method or by inspection B2 Obtain the other critical value similarly State correct answer x < -8 or x > 0**B**1 [4]

Q27.

2	EITHER	State or imply non-modular inequality $(2x - 3)^2 \le (3x)^2$, or corresponding equation or pair of linear equations	M1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	M1	
		Obtain critical values -3 and $\frac{3}{5}$	A1	
		State correct answer $x \le -3$ or $x \ge \frac{3}{5}$	A1	
	OR	State one critical value, e.g. $x = -3$, by solving a linear equation (or inequality) or from a graphical method or by inspection State the other critical value correctly	B1 B2	
		State correct answer $x \le -3$ or $x \ge \frac{3}{5}$	B1	[4]
Q28				
1	EITHER	State or imply non-modular inequality $(x-2)^2 \ge (x+5)^2$, or		
		corresponding equation or pair of linear equations	M1	
		Obtain critical value $-\frac{3}{2}$	A1	

A1

M1

A1

A1

[3]

State correct answer $x \le -\frac{3}{2}$

Obtain critical value $-\frac{3}{2}$ State correct answer $x \le -\frac{3}{2}$

Q29.

OR

1	EITHER	State or imply non-modular inequality $(2x+1)^2 < (2x-5)^2$, or	M1	
		corresponding equation or pair of linear equations		
		Obtain critical value 1	A1	
		State correct answer $x < 1$	A1	
	OR	State the critical value $x = 1$, by solving a linear equation (or		
		inequality) or from a graphical method or by inspection	B2	
		State correct answer $x < 1$	B1	[3]

State a correct linear equation for the critical value, e.g. x-2=-x-5, or corresponding correct linear inequality, e.g. $x-2 \ge -x-5$

Q30.

1	Either	State or imply non-modular inequality $(x+1)^2 < (3x+5)^2$, or		
		corresponding equation or pair of linear equations	M1	
		Make reasonable solution attempt at a 3-term quadratic, or solve		
		two linear equations	M1	
		Obtain critical values -2 and $-\frac{3}{2}$	A1	
		State correct answer $x < -2$ or $x > -\frac{3}{2}$	A1	
	Or	Obtain one critical value, e.g. $x = -2$, by solving a linear equation (or inequality)		
		or from a graphical method or by inspection	B1	
		Obtain the other critical value similarly	B2	
		State correct answer $x < -2$ or $x > -\frac{3}{2}$	B1	[4]

Q31.

1	Either	State or imply non-modular inequality $(3x-2)^2 > (x+4)^2$ or corresponding equation		
		or pair of linear equations Attempt solution of 3-term quadratic equation or of 2 linear equations	B1 M1	
		Obtain critical values $-\frac{1}{2}$ and 3	A1	
		State answer $x < -\frac{1}{2}$, $x > 3$	A1	[4]
	Or	Obtain critical value $x = 3$ from graphical method, inspection, equation	В1	
		Obtain critical value $x = -\frac{1}{2}$ similarly	B2	
		State answer $x < -\frac{1}{2}, x > 3$	B1	[4]

P3 (variant1 and 3)

Q1.

1	EITHER:	State or imply non-modular inequality $(x+3a)^2 > (2(x-2a))^2$, or corresponding quadratic equation, or pair of linear equations $(x+3a) = \pm 2(x-2a)$	B1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations	M1	
		Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$	A1	
		State answer $\frac{1}{3}a < x < 7a$	A1	
	OR:	Obtain the critical value $x = 7a$ from a graphical method, or by inspection, or by		
		solving a linear equation or inequality	B1	
		Obtain the critical value $x = \frac{1}{3}a$ similarly	B2	
		State answer $\frac{1}{3}a < x < 7a$	B1	[4]
		[Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.]		

Q2.

EITHER: State or imply non-modular inequality $(x-3)^2 > (2(x+1))^2$, or corresponding quadratic equation, or pair of linear equations $(x-3) = \pm 2(x+1)$ B₁ Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations M1 Obtain critical values -5 and $\frac{1}{3}$ A1 State answer $-5 < x < \frac{1}{3}$ A1 OR: Obtain the critical value x = -5 from a graphical method, or by inspection, **B**1 or by solving a linear equation or inequality Obtain the critical value $x = \frac{1}{3}$ similarly B₂ State answer $-5 < x < \frac{1}{3}$ B₁ [4] [Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.]

Q3.

EITHER: State or imply non-modular inequality $(4x + 3)^2 > x^2$, or corresponding equation or pair of equations $4x + 3 = \pm x$ M1Obtain a critical value, e.g. -1 A1 Obtain a second critical value, e.g. $-\frac{3}{5}$ A1 State final answer $x < -1, x > -\frac{3}{5}$ A1 OR: Obtain critical value x = -1, by solving a linear equation or inequality, or from a graphical method or by inspection Obtain the critical value $-\frac{3}{5}$ similarly B2 State final answer $x < -1, x > -\frac{3}{5}$ **B**1 [4] [Do not condone \leq or \geq .]

Q4.

1	EITHER:	State or imply non-modular inequality $(2-3x)^2 < (x-3)^2$, or corresponding equation	on,	
		and make a reasonable solution attempt at a 3-term quadratic	M1	
		Obtain critical value $x = -\frac{1}{2}$	A1	
		Obtain $x > -\frac{1}{2}$	A1	
		Fully justify $x \ge -\frac{1}{2}$ as only answer	A1	
	OR1:	State the relevant critical linear equation, i.e. $2 - 3x = 3 - x$	B1	
		Obtain critical value $x = -\frac{1}{2}$	B 1	
		Obtain $x > -\frac{1}{2}$	B1	
		Fully justify $x > -\frac{1}{2}$ as only answer	B1	
	OR2:	Obtain the critical value $x = -\frac{1}{2}$ by inspection, or by solving a linear inequality	B2	
		Obtain $x > -\frac{1}{2}$	B1	
		Fully justify $x \ge -\frac{1}{2}$ as only answer	B1	
	OR3:	Make recognisable sketches of $y = 2 - 3x$ and $y = x - 3 $ on a single diagram	B1	
		Obtain critical value $x = -\frac{1}{2}$	B1	
		Obtain $x > -\frac{1}{2}$	B1	
		Fully justify $x > -\frac{1}{2}$ as only answer	B1	[4]
		[Condone \geq for $>$ in the third mark but not the fourth.]		
0-				
Q5.				
1	FITHER.	State or imply non-modular inequality $(2(x-3))^2 > (3x+1)^2$, or corresponding		
	LITTILK.	quadratic equation, or pair of linear equations $2(x-3) = \pm (3x+1)$	B1	
		Make reasonable solution attempt at a 3-term quadratic, or solve two linear		
		equations	M1	
		Obtain critical values $x = -7$ and $x = 1$	A1	
	OR:	State answer $-7 < x < 1$	A1	
	OK.	Obtain critical value $x = -7$ or $x = 1$ from a graphical method, or by inspection, or by solving a linear equation or inequality	В1	
		Obtain critical values $x = -7$ and $x = 1$	B2	
		State answer $-7 < x < 1$	B1	[4]
		[Do not condone: < for <.]		

Q6.

EITHER State or imply non-modular inequality $(3(x-1))^2 < (2x+1)^2$ or corresponding quadratic equation, or pair of linear equations $3(x-1) = \pm (2x+1)$ **B**1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear M1Obtain critical values $x = \overline{5}$ and x = 4A1 State answer $\frac{1}{5} < x < 4$ A1 Obtain critical value $x = \frac{2}{5}$ or x = 4 from a graphical method, or by inspection, or OR by solving a linear equation or inequality B1 Obtain critical values $x = \frac{\pi}{5}$ and x = 4B₂ State answer $\frac{1}{5}$ < x < 4 [4] B₁

[Do not condone 5 for .]

Q7.

State or imply non-modular inequality $(3x-1)^2 < (2x+5)^2$ or corresponding Either quadratic equation or pair of linear equations $3x-1=\pm(2x+5)$ **B1** Solve a three-term quadratic or two linear equations $5x^2 - 26x - 24 < 0$ M1 Obtain $-\frac{4}{5}$ and 6 A1 State $-\frac{4}{5} < x < 6$ A1 Obtain value 6 from graph, inspection or solving linear equation Or B1Obtain value $-\frac{4}{5}$ similarly B2 State $-\frac{4}{5} < x < 6$ B₁ [4]