Q1.

3 (i)	State or imply indefinite integral of e^{2x} is $\frac{1}{2}e^{2x}$, or equivalent Substitute correct limits correctly Obtain answer $R = \frac{1}{2}e^{2p} - \frac{1}{2}$, or equivalent	B1 M1 A1
		[3]
(ii)	Substitute $R = 5$ and use logarithmic method to obtain an equal in $2p$ Solve for p Obtain answer $p = 1.2$ (1.1989)	M1* M1 (dep*) A1

Q2.

7	(i)	Make relevant use of the cos(A + B) formula Make relevant use of cos2A and sin2A formulae Obtain a correct expression in terms of cosA and sinA Use sin ² A = 1 - cos ² A to obtain an expression in terms of cosA Obtain given answer correctly	M1* M1* A1 M1(dep*) A1 5	
	(ii)	Replace integrand by $\frac{1}{4}\cos 3x + \frac{3}{4}\cos x$, or equivalent	B1	
		Integrate, obtaining $\frac{1}{12}\sin 3x + \frac{3}{4}\sin x$, or equivalent	B1 + B1√	
		Use limits correctly Obtain given anser	M1 A1 5	

Q3.

7	(i)	Make relevant use of the $sin(A + B)$ formula Make relevant use of $sin2A$ and $cos2A$ formulae Obtain a correct expression in terms of $sin x$ and $cos x$ Use $cos^2 x = 1 - sin^2 x$ to obtain an expression in terms of $sin x$	B1 M1 A1 M1(d	lep*)
		Obtain given answer correctly	A1	5
	(ii)	Replace integrand by $\frac{3}{4} \sin x - \frac{1}{4} \sin 3x$, or equivalent	В1	
		Integrate, obtaining $-\frac{3}{4}\cos x + \frac{1}{12}\cos 3x$, or equivalent	B1√ + B1√	
		Use limits correctly Obtain given answer correctly	M1 A1	5

Q4.

State correct expression $\frac{1}{2} + \frac{1}{2}\cos 2x$, or equivalent 6 (i) B₁ [1] (ii) Integrate an expression of the form $a+b\cos 2x$, where $ab \neq 0$, M1State correct integral $\frac{1}{2}x + \frac{1}{4}\sin 2x$, or equivalent A1 Use correct limits correctly M1Obtain given answer correctly A1 [4] (iii) Use identity $\sin^2 x = 1 - \cos^2 x$ and attempt indefinite integration M1Obtain integral $x - \left(\frac{1}{2}x - \frac{1}{4}\sin 2x\right)$, or equivalent A1 Use limits and obtain answer $\frac{1}{6}\pi - \frac{\sqrt{3}}{8}$ A1 [3] [Solutions that use the result of part (ii), score M1A1 for integrating 1 and A1 for the final answer.] Q5. Obtain integral $\frac{1}{2}\sin 2x - \cos x$ 3 B1 + B1Substitute limits correctly in an integral of the form $a \sin 2x + b \cos x$ M1Use correct exact values, e.g. of $\cos(\frac{1}{6}\pi)$ M1Obtain answer $1 - \frac{1}{4}\sqrt{3}$, or equivalent A1 [5] Q6. 3 Show or imply correct ordinates 1, 0.5, 0.414213 ... B1 Use correct formula, or equivalent, with h = 1 and three ordinates M1 Obtain answer 1.21 with no errors seen A1 [3] (ii) Justify the statement that the rule gives an over-estimate B1 [1] Q7. Obtain integral ln(x + 2)**B**1 M1Substitute correct limits correctly Use law for the logarithm of a product, a quotient or a power M1Obtain given answer following full and correct working [4] A1 **Q8**. (i) State or imply correct ordinates 0.27067..., 0.20521..., 0.14936... 2 **B**1 Use correct formula, or equivalent, correctly with h = 0.5 and three ordinates M1 Obtain answer 0.21 with no errors seen [3] A1

B1

[1]

(ii) Justify statement that the trapezium rule gives an over-estimate

Q9.

4,	•			
4	(a) Obtain integral $a \sin 2x$ with $a = \pm \left(1, 2 \text{ or } \frac{1}{2}\right)$	M 1	
		Use limits and obtain $\frac{1}{2}$ (AG)	A1	[2]
	(b) Use $\tan^2 x = \sec^2 x - 1$ and attempt to integrate both terms Obtain $3\tan x - 3x$ Attempt to substitute limits, using exact values Obtain answer $2\sqrt{3} - \frac{\pi}{2}$	M1 A1 M1	[4]
Q1	0.			
6	(a)	Rewrite integrand as $12e^x + 4e^{3x}$ Integrate to obtain $12e^x$ Integrate to obtain $+\frac{4}{3}e^{3x}$ Include + c	B1 B1 B1	[4]
	(b)	Use identity $\tan^2\theta = \sec^2\theta - 1$ Integrate to obtain $2\tan\theta + \theta$ or equivalent Use limits correctly for integral of form $a\tan\theta + b\theta$ Confirm given answer $\frac{1}{2}(8+\pi)$	B1 B1 M1	[4]
Q1	1.			
2	(i)	Show or imply correct ordinates 1, $\sqrt{2}$ or 1.414, 3 Use correct formula, or equivalent, with $h = 1$ Obtain 3.41	B1 M1 A1	[3]
	(ii)	Obtain $6-3.41$ and hence 2.59, following their answer to (i) provided less than 6 Refer, in some form, to two line segments replacing curve and conclude with clear justification of given result that answer is an under-estimate.	B1√ B1	[2]
Q1	2.			
4	(2	Obtain integral form of $k \cos \frac{1}{2}x$	M	I
		Obtain correct $-2\cos\frac{1}{2}x$	A	1
		Use limits correctly to obtain 1	A	1 [3]
	(1	Rewrite integrand as $e^{-x} + 1$ Integrate to obtain $-e^{-x}$ Integrate to obtain $+x + c$	Bi Bi	1

Q13.

7	(i)	Expand to obtain $4 \sin^2 x + 4 \sin x \cos x + \cos^2 x$ Use $2 \sin x \cos x = \sin 2x$ Attempt to express $\sin^2 x$ or $\cos^2 x$ (or both) in terms of $\cos 2x$ Obtain correct $\frac{1}{2}k(1-\cos 2x)$ for their $k \sin^2 x$ or equivalent	B1 B1 M1 A1√	
		Confirm given answer $\frac{5}{2} + 2\sin 2x - \frac{3}{2}\cos 2x$	A1	[5]
	(ii)	Integrate to obtain form $px + q \cos 2x + r \sin 2x$ Obtain $\frac{5}{2}x - \cos 2x - \frac{3}{4}\sin 2x$	M1 A1	
		Substitute limits in integral of form $px + q \cos 2x + r \sin 2x$ and attempt simplification	DM1	
		Obtain $\frac{5}{8}\pi + \frac{1}{4}$ or exact equivalent	A1	[4]
Q14	•			
7	(i)	Replace $\tan^2 x$ by $\sec^2 x - 1$ Express $\cos^2 x$ in the form $\pm \frac{1}{2} \pm \frac{1}{2} \cos 2x$	B1 M1	
		Obtain given answer $\sec^2 x + \frac{1}{2}\cos 2x - \frac{1}{2}$ correctly	A1	
		Attempt integration of expression	M1	
		Obtain $\tan x + \frac{1}{4}\sin 2x - \frac{1}{2}x$	A1	
		Use limits correctly for integral involving at least $\tan x$ and $\sin 2x$	M1	

(ii) State or imply volume is $\int \pi (\tan x + \cos x)^2 dx$ B1

Attempt expansion and simplification
Integrate to obtain one term of form $k \cos x$ M1

Obtain $\pi(\frac{5}{4} - \frac{1}{8}\pi) + \pi(2 - \sqrt{2})$ or equivalent

A1 [4]

A1

[7]

Q15.

Obtain $\frac{5}{4} - \frac{1}{8}\pi$ or exact equivalent

3	(i)	Either		
	(-)	Use $\sin 2x = 2\sin x \cos x$ to convert integrand to $k \sin^2 2x$	M1	
		Use $\cos 4x = 1 - 2\sin^2 2x$	M1	
		State correct expression $\frac{1}{2} - \frac{1}{2}\cos 4x$ or equivalent	A1	
		<u>Or</u>		
		Use $\cos^2 x = \frac{1 - \cos 2x}{2}$ and/or $x = \frac{1 - \cos 2x}{2}$ to obtain an equation in $\cos 2x$ only	M1	
		Use $\cos^2 2x = \frac{1 + \cos 4x}{2}$	M1	
		State correct expression $\frac{1}{2} - \frac{1}{2}\cos 4x$ or equivalent	A1	[3]
	(ii)	State correct integral $\frac{3}{2}x - \frac{3}{8}\sin 4x$, or equivalent	В1	
		Attempt to substitute limits, using exact values	M1	
		Obtain given answer correctly	A1	[3]
Q1 <i>6</i>	Ď.			
1	Int	egrate and obtain term of the form $k \ln(7-2x)$	M1	
		$te y = -2 \ln(7 - 2x)(+c)$	A1	
		aluate c	DM1	
	Ob	$tain answer v = -2 \ln(7 - 2r) + 2$	A 1.J	[/1]

Q17.

Obtain answer $y = -2 \ln(7 - 2x) + 2$

6	(a) O	Obtain indefinite integral $-\frac{1}{2}\cos 2x + \sin x$		es A		B1 + B1	
	U	Jse limits with attempted integral				Ml	9
	C	Obtain answer 2 correctly with no errors		4,	. 18	Al	4
	(b) (i	i) Identify R with correct definite integral and att	empt to integrate			MI	
		Obtain indefinite integral $\ln (x+1)$				B1	
		Obtain answer $R = \ln (p+1) - \ln 2$				Al	3
	(ii	i) Use exponential method to solve an equation of	of the form $\ln x = k$			MI	53
		Obtain answer $p = 13.8$				Al	2

DM1 A1√

[4]

Q18.

7	(5)	Obtain detivative of the form $k \sec^2 2x$, where $k = 2$ or $k = 1$	MI	
		Obtain correct derivative 2 sec ² 2x	Al	2
	(ii)	State or imply the indefinite integral is $\frac{1}{k} \tan 2x$, where $k=2$ or $k=1$	MI+	
		Substitute limits correctly Obtain given answer $\frac{1}{2}\sqrt{3}$	MJ(de	ep*)
		Use $\tan^2 2x = \sec^2 2x - 1$ and attempt to integrate both terms, or equivalent	MI	
		Substitute limits in indefinite integral of the form $\frac{1}{k} \tan 2x - x$, where $k = 2$ or $k = 1$	MI	
		Obtain answer $\frac{1}{2}\sqrt{3} - \frac{1}{6}\pi$, or equivalent	Al	6
	(iii)	State that the integrand is equivalent to $\frac{1}{2} \sec^2 2\pi$	BI	
		Obtain answer $\frac{1}{4}\sqrt{3}$	Bi	2

Q19.

State indefinite integral of the form $k \ln(2x + 1)$, where $k = \frac{1}{2}$, 1 or 2 M1State correct integral $\frac{1}{2}$ In(2x + 1) A1 Use limits correctly, allow use of limits x = 4 and x = 1 in an incorrect form M1Obtain given answer A1 [4]

Q20.

(i) Expand and use sin 2A formula M1 Use cos 2A formula at least once Obtain any correct expression in terms of $\cos 2x$ and $\sin 2x$ only – can be implied A1 Obtain given answer correctly A1 [4] (ii) State indefinite integral $5x - 2\sin 2x - \frac{3}{2}\cos 2x$ B2 [Award B1 if one error in one term] Substitute limits correctly - must be correct limits M1 Obtain answer $\frac{1}{4}$ (5 π – 2), or exact simplified equivalent A1 [4]

M1

Q21.

B15 Integrate and state term $\ln x$ Obtain term of the form $k \ln (2x + 1)$ M1State correct term $-2\ln(2x+1)$ A1 Substitute limits correctly M1 Use law for the logarithm of a product, quotient or power M1 Obtain given answer correctly A1 [6]

Q22.

- 5 (i) Use double angle formulae and obtain $a + b\cos 4x$ M1
 Obtain answer $\frac{1}{2} + \frac{1}{2}\cos 4x$, or equivalent A1 [2]
 - (ii) Integrate and obtain $\frac{1}{2}x + \frac{1}{8}\sin 4x$ A1 $\sqrt{ + A1}\sqrt{ }$ Substitute limits correctly M1

 Obtain answer $\frac{1}{16}\pi + \frac{1}{8}$, or exact equivalent A1 [4]

Q23.

- (i) Show or imply correct ordinates 1, 1.15470..., 2
 Use correct formula, or equivalent, with h = ½π and three ordinates
 M1
 Obtain answer 1.39 with no errors seen
 A1 [3]
 (ii) Make recognisable sketch of y = sec x for 0 ≤ x ≤ ½π
 B1
 - (ii) Make recognisable sketch of $y = \sec x$ for $0 \le x \le \frac{1}{3}\pi$ B1

 Using a correct graph, explain that the rule gives an over-estimate B1 [2]

Q24.

- 8 (a) Integrate and obtain term $k \cos 2x$, where $k = \pm \frac{1}{2}$ or ± 1 Obtain term $-\frac{1}{2}\cos 2x$ A1

 Obtain term $\tan x$ Substitute correct limits correctly

 Obtain exact answer $\frac{3}{4} + \sqrt{3}$ A1

 A1 [5]
 - (b) Integrate and obtain $\frac{1}{2} \ln x + \ln(x+1)$ or $\frac{1}{2} \ln 2x + \ln(x+1)$ B1 + B1

 Substitute correct limits correctly

 Obtain given answer following full and correct working

 A1 [4]

Q25.

3 Integrate and obtain $\frac{1}{2}e^{2x}$ term

Obtain $2e^{x}$ term

Obtain xUse limits correctly, allow use of limits x = 1 and x = 0 into an incorrect form

Obtain given answer

S. R. Feeding limits into original integrand, 0/5

Q26.

- 4 (a) Obtain integral of the form ke^{1-2x} with any non-zero k M1 Correct integral A1 [2]
 - (b) Attempt to use double angle formula to expand $\cos(3x + 3x)$ M1

 State correct expression $\frac{1}{2} \frac{1}{2} \cos 6x$ or equivalent

 Integrate an expression of the form $a + b \cos 6x$, where $ab \ne 0$, correctly

 State correct integral $\frac{1}{2}x \frac{1}{12} \sin 6x$, or equivalent

 A1 [4]

Q27.

2 Integrate and obtain term of the form $k\ln(4x+1)$ M1

State correct term $\frac{1}{2}\ln(4x+1)$ A1

Substitute limits correctly M1

Use law for the logarithm of a quotient or a power Obtain given answer correctly A1 [5]

Q28.

- 8 (i) Make relevant use of the $\cos(A+B)$ formula M1*

 Make relevant use of the $\cos 2A$ and $\sin 2A$ formulae M1*

 Obtain a correct expression in terms of $\cos x$ and $\sin x$ A1

 Use $\sin^2 x = 1 \cos^2 x$ to obtain an expression in terms of $\cos x$ M1(dep*)

 Obtain given answer correctly A1 [5]
 - (ii) Replace integrand by $\frac{1}{2}\cos 3x + \frac{1}{2}\cos x$, or equivalent B1

 Integrate, obtaining $\frac{1}{6}\sin 3x + \frac{1}{2}\sin x$, or equivalent

 Use limits correctly
 Obtain given answer

 M1

 A1 [5]

Q29.

4 State at least one correct integral
Use limits correctly to obtain an equation in e^{2k} , e^{4k} Carry out recognizable solution method for quadratic in e^{2k} M1
Obtain $e^{2k} = 1$ and $e^{2k} = 3$ Use logarithmic method to solve an equation of the form $e^{\lambda a} = b$, where b > 0M1
Obtain answer $k = \frac{1}{2} \ln 3$ A1 [6]

Q30.

- 4 (i) State correct expression $\frac{1}{2} + \frac{1}{2}\cos 2x$, or equivalent B1 [1]
 - (ii) Integrate an expression of the form $a+b\cos 2x$, where $ab \ne 0$, correctly

 State correct integral $\frac{1}{2}x + \frac{1}{4}\sin 2x$, or equivalent

 A1
 - Obtain correct integral (for sin 2x term) of $-\frac{1}{2}\cos 2x$
 - Attempt to substitute limits, using exact values

 Obtain given answer correctly

 M1

 A1 [5]

Q31.

- 6 (a) State or imply correct ordinates 0.125, 0.08743..., 0.21511... B1

 Use correct formula, or equivalent, correctly with h = 0.5 and three ordinates

 Obtain answer 0.11 with no errors seen

 A1 [3]
 - (b) Attempt to expand brackets and divide by e^{2x} M1
 Integrate a term of form ke^{-x} or ke^{-2x} correctly
 Obtain 2 correct terms
 Fully correct integral $x + 4e^{-x} 2e^{-2x} + c$ A1
 [4]

Q32.

- 6 (a) Obtain integral $ke^{-\frac{1}{2}x}$ with any non-zero k M1

 Correct integral A1 [2]
 - (b) State indefinite integral of the form $k \ln (3x-1)$, where k=2, 6 or 3

 State correct integral $2 \ln (3x-1)$ Substitute limits correctly (must be a function involving a logarithm)

 Use law for the logarithm of a power or a quotient

 Obtain given answer correctly

 A1

 [5]

Q33.

- 6 (a) (i) Attempt to divide by e^{2x} and attempt to integrate 2 terms

 Integrate a term of form ke^{-2x} correctly

 Fully correct integral $x 3e^{-2x} (+c)$ A1 [3]
 - (ii) State correct expression $\frac{1}{2}\cos 2x + \frac{1}{2}$ or equivalent

 Integrate an expression of the form $a + b\cos 2x$, where $ab \neq 0$, correctly

 M1

 State correct integral $\frac{3\sin 2x}{4} + \frac{3x}{2}(+c)$ A1 [3]
 - (b) State or imply correct ordinates 5.46143..., 4.78941..., 4.32808... B1

 Use correct formula, or equivalent, correctly with h = 0.5 and three ordinates

 Obtain answer 4.84 with no errors seen

 A1 [3]

Q34.

1	(1)	State indefinite integral of the form k in $(4x-1)$, where $k=2,4$, or $\frac{7}{2}$ State correct integral $\frac{1}{2} \ln (4x-1)$	A1	[2]
	(ii)	Substitute limits correctly Use law for the logarithm of a power or a quotient Obtain ln 3 correctly	M1 M1 A1	[3]
35.				

Q:

- (a) Expand brackets and use $\sin^2 x + \cos^2 x = 1$ M1 Obtain $1 - \sin 2x$ A1 Integrate and obtain term of form $\pm k \cos 2x$, where $k = \frac{1}{2}$, 1 or 2 M1 State correct integral $x + \frac{\cos 2x}{2}(+c)$ A1 [4]
 - (b) (i) State or imply correct ordinates 1.4142..., 1.0823..., 1 B1 Use correct formula, or equivalent, correctly with $h = \frac{\pi}{8}$ and three ordinates M1 Obtain answer 0.899 with no errors seen A1 [3]
 - (ii) Make a recognisable sketch of $y = \csc x$ for $0 < x \le \frac{1}{2}\pi$ B₁ Justify statement that the trapezium rule gives an over-estimate B1 [2]

Q36.

5 (i) Express left-hand side as a single fraction
Use $\sin 2\theta = 2\sin \theta \cos \theta$ at some point
Complete proof with no errors seen (AG)

M1
B1
A1 [3]

© Cambridge International Examinations 2014

Page 5	Mark Scheme	Syllabus	Pape	r
200	GCE AS LEVEL – May/June 2014	9709	21	
(ii) (a)	State $\frac{2}{\sin\frac{1}{4}\pi}$ or equivalent		B1	
	Obtain $2\sqrt{2}$ or exact equivalent (dependent on first B1)		B1	[2]
(b)	State or imply $k \sin 2\theta$ for any k		B1	
	Integrate to obtain $-\frac{3}{2}\cos 2\theta$		B1	
	Substitute both limits correctly to obtain 3		B1	[3]
37.				
6 (a) Int	egrate to obtain form $k \ln(2x-7)$		M1	
Ob	tain correct $3\ln(2x-7)$		A1	
	bstitute limits correctly (dependent on first M1)		DM1	
	e law for logarithm of a quotient or power (dependent on first M	(1)	DM1	
Co	nfirm In125 following correct work and sufficient detail (AG)		A1	[5]
(b) Ev	aluate y at (1), 5, 9, 13, 17		M1	
	e correct formula, or equivalent, with $h = 4$ and five y-values		M1	
Ob	tain 13.5		A1	[3]
38.				
3 (a) 1	integrate to obtain form $k\sin(\frac{1}{3}x+2)$ where $k \neq 4$		M 1	
	Obtain $12\sin(\frac{1}{3}x+2)$ (+c)		A1	[2]
(b) S	State or imply correct y-values 2, $\sqrt{20}$, $\sqrt{68}$, $\sqrt{148}$		B1	
	Use correct formula, or equivalent, with $h = 4$ and four y-values		M1	
(Obtain 79.2		A1	[3]

Q39.

1	Us	ate or imply correct y-values 6, 4, 0, 8, 24 se correct formula, or equivalent, with $h = 1$ and five y-values otain 27	B1 M1 A1	[3]
Q40	•			
3	(a)	Express integrand in the form $p\cos\theta + 2$ State correct $2\cos\theta + 2$ Integrate to obtain $2\sin\theta + 2\theta$ (+ c)	M1 A1 A1	[3]
	(b)	Integrate to obtain form $k \ln(2x+3)$ Obtain correct $\frac{1}{2} \ln(2x+3)$	M1 A1	
		Apply limits correctly Obtain $\frac{1}{2} \ln 15$	DM1 A1	[4]
Q41	•			
2	(ii)	Integrate to obtain form $pe^{-x} + qe^{-3x}$ where $p \ne 1, q \ne 6$ Obtain $-e^{-x} - 2e^{-3x}$ (allow unsimplified) Apply both limits to $pe^{-x} + qe^{-3x}$ (allow $p = 1, q = 6$) Obtain $3 - e^{-a} - 2e^{-3a}$ State 3 following a result of the form $k + pe^{-x} + qe^{-3x}$	M1 A1 M1 A1	[4] [1]
P3 (\	/ari	ant1 and 3)		
Q1.				
4		(i) State correct expansion of $\cos(3x-x)$ or $\cos(3x+x)$ Substitute expansions in $\frac{1}{2}(\cos 2x - \cos 4x)$, or equivalent Simplify and obtain the given identity correctly	B1 M1 A1	[3]
		(ii) Obtain integral $\frac{1}{4}\sin 2x - \frac{1}{8}\sin 4x$ Substitute limits correctly in an integral of the form $a\sin 2x + b\sin 4x$ Obtain given answer following full correct and exact working	B1 M1 A1	[3]

Q2.

(i) State or imply the form $\frac{A}{x+1} + \frac{B}{x+3}$ and use a relevant method to find A or B 8 M1A1 [2] (ii) Square the result of part (i) and substitute the fractions of part (i) M1Obtain the given answer correctly A1 [2] (iii) Integrate and obtain $-\frac{1}{x+1} - \ln(x+1) + \ln(x+3) - \frac{1}{x+3}$ **B3** Substitute limits correctly in an integral containing at least two terms of the correct M1Obtain given answer following full and exact working A1 [5]

Q3.

- (i) Use correct $\cos(A+B)$ formula to express $\cos 3\theta$ in terms of trig functions of 2θ and θ M1

 Use correct trig formulae and Pythagoras to express $\cos 3\theta$ in terms of $\cos \theta$ M1

 Obtain a correct expression in terms of $\cos \theta$ in any form

 Obtain the given identity correctly

 [SR: Give M1 for using correct formulae to express RHS in terms of $\cos \theta$ and $\cos 2\theta$, then M1A1 for expressing in terms of either only $\cos 3\theta$ and $\cos \theta$, or only $\cos 2\theta$, $\sin 2\theta$, $\cos \theta$, and $\sin \theta$, and A1 for obtaining the given identity correctly.]
 - (ii) Use identity and integrate, obtaining terms $\frac{1}{4}(\frac{1}{3}\sin 3\theta)$ and $\frac{1}{4}(3\sin \theta)$, or equivalent B1 + B1

 Use limits correctly in an integral of the form $k\sin 3\theta + l\sin \theta$ M1

 Obtain answer $\frac{2}{3} \frac{3}{8}\sqrt{3}$, or any exact equivalent A1 [4]

Q4.

- 7 (i) State or imply dx = 2t dt or equivalent B1 Express the integral in terms of x and dx M1 Obtain given answer $\int_{1}^{5} (2x-2) \ln x dx$, including change of limits AG A1 [3]
 - (ii) Attempt integration by parts obtaining $(ax^2 + bx) \ln x \pm \int (ax^2 + bx) \frac{1}{x} dx$ or equivalent M1

 Obtain $(x^2 2x) \ln x \int (x^2 2x) \frac{1}{x} dx$ or equivalent A1

 Obtain $(x^2 2x) \ln x \frac{1}{2}x^2 + 2x$ A1

 Use limits correctly having integrated twice M1

 Obtain 15 ln 5 4 or exact equivalent A1 [5]

 [Equivalent for M1 is $(2x 2)(ax \ln x + bx) \int (ax \ln x + bx) 2dx$]

Q5.

- 10 (i) Separate variables correctly and integrate of at least one side M1 Carry out an attempt to find A and B such that $\frac{1}{N(1800-N)} = \frac{A}{N} + \frac{B}{1800-N}$, or equivalent M1Obtain $\frac{2}{N} + \frac{2}{1800 - N}$ or equivalent A1 Integrates to produce two terms involving natural logarithms M1Obtain 2 ln N-2 ln (1800 - N) = t or equivalent A1 Evaluate a constant, or use N = 300 and t = 0 in a solution involving $a \ln N$, $b \ln(1800)$ M1Obtain 2 $\ln N - 2 \ln (1800 - N) = t - 2 \ln 5$ or equivalent A1 Use laws of logarithms to remove logarithms M1Obtain $N = \frac{1800e^{\frac{1}{2}t}}{5 + e^{\frac{1}{2}t}}$ or equivalent A1 [9] (ii) State or imply that N approaches 1800 B1[1] Q6. Attempt integration by parts and reach $k(1-x)e^{-\frac{1}{2}x} \pm k \int e^{-\frac{1}{2}x} dx$, or equivalent M1 Obtain $-2(1-x)e^{-\frac{1}{2}x} - 2\int e^{-\frac{1}{2}x} dx$, or equivalent A1 Integrate and obtain $-2(1-x)e^{-\frac{1}{2}x} + 4e^{-\frac{1}{2}x}$, or equivalent A1 Use limits x = 0 and x = 1, having integrated twice M1 Obtain the given answer correctly A1 [5] Q7. 9 (i) State or imply $\frac{dx}{dt} = k(10 - x)(20 - x)$ and show k = 0.01[1] (ii) Separate variables correctly and attempt integration of at least one side M1Carry out an attempt to find A and B such that $\frac{1}{(10-x)(20-x)} = \frac{A}{10-x} + \frac{B}{20-x}$, or
 - M1Obtain $A = \frac{1}{10}$ and $B = -\frac{1}{10}$, or equivalent A1 Integrate and obtain $-\frac{1}{10}\ln(10-x)+\frac{1}{10}\ln(20-x)$, or equivalent A1V Integrate and obtain term 0.01t, or equivalent A1 Evaluate a constant, or use limits t = 0, x = 0, in a solution containing terms of the form $a \ln(10 - x)$, $b \ln(20 - x)$ and ct M1Obtain answer in any form, e.g. $-\frac{1}{10}\ln(10-x)+\frac{1}{10}\ln(20-x)=0.01t+\frac{1}{10}\ln 2$ A1√ Use laws of logarithms to correctly remove logarithms M1Rearrange and obtain $x = 20(\exp(0.1t) - 1)/(2\exp(0.1t) - 1)$, or equivalent

A1

[9]

Q8.

7	Separate variables correctly and attempt integration on at least one side	M1	
	Obtain $\frac{1}{3}y^3$ or equivalent on left-hand side	A1	
	Use integration by parts on right-hand side (as far as $axe^{3x} + \int be^{3x} dx$)	M1	
	Obtain or imply $2xe^{3x} + \int 2e^{3x} dx$ or equivalent	A 1	
	Obtain $2xe^{3x} - \frac{2}{3}e^{3x}$	A1	
	Substitute $x = 0$, $y = 2$ in an expression containing terms Ay^3 , Bxe^{3x} , Ce^{3x} , where $ABC \neq 0$, and		
	find the value of c	M1	
	Obtain $\frac{1}{3}y^3 = 2xe^{3x} - \frac{2}{3}e^{3x} + \frac{10}{3}$ or equivalent	A1	
	Substitute $x = 0.5$ to obtain $y = 2.44$	A1	[8]

Q9.

5	Separate variables correctly	B1	
	Integrate and obtain term $\ln x$	B1	
	Integrate and obtain term $\frac{1}{2}\ln(y^2+4)$	B 1	
	Evaluate a constant or use limits $y = 0$, $x = 1$ in a solution containing $a \ln x$ and $b \ln(y^2 + 4)$	M1	
	Obtain correct solution in any form, e.g. $\frac{1}{2}\ln(y^2 + 4) = \ln x + \frac{1}{2}\ln 4$	A1	
	Rearrange as $y^2 = 4(x^2 - 1)$, or equivalent	A1	[6]

Q10.

4	Separate variables correctly	B1	
	Obtain term $k \ln(4-x^2)$, or terms $k_1 \ln(2-x) + k_2 \ln(2+x)$	B1	
	Obtain term $-2 \ln(4-x^2)$, or $-2 \ln(2-x) -2 \ln(2+x)$, or equivalent	B1	
	Obtain term t, or equivalent	B1	
	Evaluate a constant or use limits $x = 1$, $t = 0$ in a solution containing terms $a \ln(4 - x^2)$ and bt		
	or terms $c \ln(2-x)$, $d \ln(2+x)$ and bt	M ₁	
	Obtain correct solution in any form, e.g. $-2 \ln(4 - x^2) = t - 2 \ln 3$	A1	
	Rearrange and obtain $x^2 = 4 - 3\exp(-\frac{1}{2}t)$, or equivalent (allow use of 2 ln 3 = 2.20)	A1	[7]

Q11.

State or imply form $A + \frac{B}{2x+1} + \frac{C}{x+2}$ B1 State or obtain A = 2B1 Use correct method for finding B or C M1 Obtain B = 1A1 Obtain C = -3A1 Obtain $2x + \frac{1}{2}\ln(2x+1) - 3\ln(x+2)$ [Deduct B1 $\sqrt{}^h$ for each error or omission] B3√ Substitute limits in expression containing $a\ln(2x+1) + b\ln(x+2)$ M1 Show full and exact working to confirm that $8 + \frac{1}{2} \ln 9 - 3 \ln 6 + 3 \ln 2$, or an equivalent expression, simplifies to given result 8 - ln 9 A1 [10] [SR: If A omitted from the form of fractions, give B0B0M1A0A0 in (i); B0√B1√B1√M1A0 [SR: For a solution starting with $\frac{M}{2x+1} + \frac{Nx}{x+2}$ or $\frac{Px}{2x+1} + \frac{Q}{x+2}$, give B0B0M1A0A0 in (i); Bl√Bl√Bl√, if recover correct form, M1A0 in (ii).] [SR: For a solution starting with $\frac{B}{2x+1} + \frac{Dx+E}{x+2}$, give M1A1 for one of B=1, D=2, E=1and A1 for the other two constants; then give B1B1 for A = 2, C = -3.] [SR: For a solution starting with $\frac{Fx+G}{2x+1} + \frac{C}{x+2}$, give M1A1 for one of C = -3, F = 4, G = 3and A1 for the other constants or constant; then give B1B1 for A = 2, B = 1.

Q12.

Substitute for x, separate variables correctly and attempt integration of both sides M1Obtain term ln y, or equivalent A1 Obtain term e-3t, or equivalent A1 Evaluate a constant, or use t = 0, y = 70 as limits in a solution containing terms M1Obtain correct solution in any form, e.g. $\ln y - \ln 70 = e^{-3t} - 1$ A1 Rearrange and obtain $y = 70\exp(e^{-3t} - 1)$, or equivalent A1 [6] (ii) Using answer to part (i), either express p in terms of t or use $e^{-3t} \to 0$ to find the limiting M1Obtain answer $\frac{100}{6}$ from correct exact work [2] A1

Q13.

(i) State or imply the form
$$A + \frac{B}{x+1} + \frac{C}{2x-3}$$

State or obtain $A = 2$

Use a correct method for finding a constant

Obtain $B = -2$

Obtain $C = -1$

A1

Obtain integral $2x - 2\ln(x+1) - \frac{1}{2}\ln(2x-3)$

(Deduct $B \mid \sqrt[h]{}$ for each error or omission. The f.t. is on A, B, C .)

Substitute limits correctly in an expression containing terms $a\ln(x+1)$ and $b\ln(2x-3)$

Obtain the given answer following full and exact working

[SR:If A omitted from the form of fractions, give B0B0M1A0A0 in (i); $B \mid \sqrt[h]{} B \mid \sqrt[h]{} M1A0$

in (ii).]

[SR:For a solution starting with $\frac{B}{x+1} + \frac{Dx+E}{2x-3}$, give M1A1 for one of $B = -2, D = 4$,

 $E = -7$ and A1 for the other two constants; then give B1B1 for $A = 2, C = -1$.]

[SR:For a solution starting with $\frac{Fx+G}{x+1} + \frac{C}{2x-3}$ or with $\frac{Fx}{x+1} + \frac{C}{2x-3}$, give M1A1 for one of $C = -1$, $C = -1$.]

Q14.

8 (a) Carry out integration by parts and reach
$$ax^2 \ln x + b \int \frac{1}{2}x^2 dx$$
 M1*

Obtain $2x^2 \ln x - \int \frac{1}{x} \cdot 2x^2 dx$ A1

Obtain $2x^2 \ln x - x^2$ A1

Use limits, having integrated twice M1 (dep*)

Confirm given result $56 \ln 2 - 12$ A1 [5]

© Cambridge International Examinations 2013

Page 6	Mark Scheme	Syllabus	Paper	
1001	GCE AS/A LEVEL – May/June 2013	9709	31	
(b) State or in	$mply \frac{du}{dx} = 4\cos 4x$		В1	in the
Carry out	complete substitution except limits		M1	
Obtain ∫	$\left(\frac{1}{4} - \frac{1}{4}u^2\right) du$ or equivalent		A1	
Integrate	to obtain form $k_1u + k_2u^3$ with non-zero constants k_1, k_2		M1	
Use appro	opriate limits to obtain 11/96		A1	[5]

Q15.

(1)	State $\frac{dr}{dt} = 80 - kV$	BI	
	Correctly separate variables and attempt integration of one side	M1	
	Obtain $a \ln(80 - kV) = t$ or equivalent	M1*	
	Obtain $-\frac{1}{k}\ln(80-kV) = t$ or equivalent	A1	
	Use $t = 0$ and $V = 0$ to find constant of integration or as limits	M1 (dep*)	
	Obtain $-\frac{1}{k}\ln(80 - kV) = t - \frac{1}{k}\ln 80$ or equivalent	A1	
	Obtain given answer $V = \frac{1}{k} (80 - 80e^{-kt})$ correctly	A1	[7]
(ii)	Use iterative formula correctly at least once	M1	
	Obtain final answer 0.14	A1	
	Show sufficient iterations to 4 s.f. to justify answer to 2 s.f. or show a sign		
	change in the interval (0.135, 0.145)	A1	[3]
(iii)	State a value between 530 and 540 cm ³ inclusive	B1	
	State or imply that volume approaches 569 cm ³ (allowing any value between		
	567 and 571 inclusive)	B1	[2]
	(ii)	Correctly separate variables and attempt integration of one side Obtain $a \ln(80-kV) = t$ or equivalent Obtain $-\frac{1}{k}\ln(80-kV) = t$ or equivalent Use $t = 0$ and $V = 0$ to find constant of integration or as limits Obtain $-\frac{1}{k}\ln(80-kV) = t - \frac{1}{k}\ln 80$ or equivalent Obtain given answer $V = \frac{1}{k}(80-80e^{-kt})$ correctly (ii) Use iterative formula correctly at least once Obtain final answer 0.14 Show sufficient iterations to 4 s.f. to justify answer to 2 s.f. or show a sign change in the interval $(0.135, 0.145)$ (iii) State a value between 530 and 540 cm ³ inclusive State or imply that volume approaches 569 cm ³ (allowing any value between	Correctly separate variables and attempt integration of one side Obtain $a \ln(80 - kV) = t$ or equivalent Obtain $-\frac{1}{k} \ln(80 - kV) = t$ or equivalent Use $t = 0$ and $V = 0$ to find constant of integration or as limits Obtain $-\frac{1}{k} \ln(80 - kV) = t - \frac{1}{k} \ln 80$ or equivalent Obtain given answer $V = \frac{1}{k} (80 - 80e^{-kt})$ correctly A1 (ii) Use iterative formula correctly at least once Obtain final answer 0.14 Show sufficient iterations to 4 s.f. to justify answer to 2 s.f. or show a sign change in the interval $(0.135, 0.145)$ A1 (iii) State a value between 530 and 540 cm ³ inclusive State or imply that volume approaches 569 cm ³ (allowing any value between

Q16.

(i) State R = 2

Use trig formula to find α M1

Obtain $\alpha = \frac{1}{6}\pi$ with no errors seen

A1 [3]

(ii) Substitute denominator of integrand and state integral $k \tan (x - \alpha)$ M1*

State correct indefinite integral $\frac{1}{4}\tan \left(x - \frac{1}{6}\pi\right)$ A1 $\sqrt[k]{}$ Substitute limits

Obtain the given answer correctly

M1 (dep*)

A1 [4]

B1

Q17.

M1 8 Separate variables correctly and integrate at least one side Obtain term ln t, or equivalent B1Obtain term of the form $a \ln(k-x^3)$ M1Obtain term $-\frac{2}{3}\ln(k-x^3)$, or equivalent A1 EITHER: Evaluate a constant or use limits t = 1, x = 1 in a solution containing $a \ln t$ and M1* Obtain correct answer in any form e.g. $\ln t = -\frac{2}{3}\ln(k-x^3) + \frac{2}{3}\ln(k-1)$ A1 Use limits t = 4, x = 2, and solve for kM1(dep*) Obtain k = 9A1 Using limits t = 1, x = 1 and t = 4, x = 2 in a solution containing $a \ln t$ and OR: b ln $(k-x^3)$ obtain an equation in k M1* Obtain a correct equation in any form, e.g. $\ln 4 = -\frac{2}{3}\ln(k-8) + \frac{2}{3}\ln(k-1)$ A1 M1(dep*) Solve for k Obtain k = 9A1 Substitute k = 9 and obtain $x = (9 - 8t^{-\frac{3}{2}})^{\frac{1}{3}}$ A1 [9] (ii) State that x approaches $9^{\overline{3}}$, or equivalent B1√ [1]

Q18.

(i) EITHER: Use double angle formulae correctly to express LHS in terms of trig functions M1Use trig formulae correctly to express LHS in terms of sin θ , converting at least M1Obtain expression in any correct form in terms of $\sin \theta$ A1 Obtain given answer correctly A1 OR: Use double angle formulae correctly to express RHS in terms of trig functions M1Use trig formulae correctly to express RHS in terms of $\cos 4\theta$ and $\cos 2\theta$ M1Obtain expression in any correct form in terms of $\cos 4\theta$ and $\cos 2\theta$ A1 Obtain given answer correctly A1 [4] (ii) State indefinite integral $\frac{1}{4}\sin 4\theta - \frac{4}{2}\sin 2\theta + 3\theta$, or equivalent B₂ (award B1 if there is just one incorrect term) Use limits correctly, having attempted to use the identity M1Obtain answer $\frac{1}{32}(2\pi - \sqrt{3})$, or any simplified exact equivalent [4] A1

Q19.

10 (i) State or imply
$$\frac{dA}{dt} = kV$$
 M1*

Obtain equation in r and $\frac{dr}{dt}$, e.g. $8\pi r \frac{dr}{dt} = k \frac{4}{3} \pi r^3$ A1

Use $\frac{dr}{dt} = 2$, $r = 5$ to evaluate k M1(dep*)

Obtain given answer A1 [4]

(ii) Separate variables correctly and integrate both sides M1

Obtain terms $-\frac{1}{r}$ and $0.08t$, or equivalent A1 + A1

Evaluate a constant or use limits $t = 0$, $r = 5$ with a solution containing terms of the form $\frac{a}{r}$ and bt M1

Obtain solution $r = \frac{5}{(1-0.4t)}$, or equivalent A1 [5]

Q20.

[Allow t < 2.5 and 0 < t < 2.5 to earn B1.]

5 (i) State or imply $dx = 2 \cos \theta d\theta$, or $\frac{dx}{d\theta} = 2 \cos \theta$, or equivalent B1Substitute for x and dx throughout the integral M1Obtain the given answer correctly, having changed limits and shown sufficient working A1 [3] (ii) Replace integrand by $2-2\cos 2\theta$, or equivalent **B**1 Obtain integral $2\theta - \sin 2\theta$, or equivalent B1√ Substitute limits correctly in an integral of the form $a\theta \pm b \sin 2\theta$, where $ab \triangleright 0$ M1Obtain answer $\frac{1}{3}\pi - \frac{\sqrt{3}}{2}$ or exact equivalent [4] A1 [The f.t. is on integrands of the form $a + c \cos 2\theta$, where $ac \triangleright 0$.]

Q21.

(i)	State or imply $\frac{dx}{dt} = k(20 - x)$	B1	
	Show that $k = 0.05$	B1	[2]
(ii)	Separate variables correctly and integrate both sides	BI	
	•		
	Evaluate a constant or use limits $t = 0$, $x = 0$ in a solution containing terms $a \ln(20 - x)$)	
	Obtain correct answer in any form, e.g. $\ln 20 - \ln(20 - x) = \frac{1}{20}t$	A1	[5]
(iii)		M1(dep*)	[2]
	Obtain allswer x = 7.9	Ai	[2]
(iv)	State that x approaches 20	B1	[1]
	(ii)	(ii) Separate variables correctly and integrate both sides Obtain term $-\ln(20-x)$, or equivalent Obtain term $\frac{1}{20}t$, or equivalent Evaluate a constant or use limits $t = 0$, $x = 0$ in a solution containing terms $a \ln(20-x)$ and bt	Show that $k = 0.05$ B1 (ii) Separate variables correctly and integrate both sides Obtain term $-\ln(20-x)$, or equivalent B1 Obtain term $\frac{1}{20}t$, or equivalent B1 Evaluate a constant or use limits $t = 0$, $x = 0$ in a solution containing terms $a \ln(20-x)$ and bt M1* Obtain correct answer in any form, e.g. $\ln 20 - \ln(20-x) = \frac{1}{20}t$ A1 (iii) Substitute $t = 10$ and calculate x M1(dep*) Obtain answer $x = 7.9$

Q22.

State or imply form
$$\frac{A}{2x+1} + \frac{B}{x+2}$$
 B1

Use relevant method to find A or B M1

Obtain $\frac{4}{2x+1} - \frac{1}{x+2}$ A1

Integrate and obtain $2\ln(2x+1) - \ln(x+2)$ (ft on their A , B) B1 \sqrt{B} 1 \sqrt{B} 1

Apply limits to integral containing terms $a\ln(2x+1)$ and $b\ln(x+2)$ and apply a law of logarithms correctly. M1

Obtain given answer $\ln 50$ correctly A1 [7]

Q23.

9 (i) State
$$\frac{dA}{dt} = k\sqrt{2A-5}$$
B1 [1]

(ii) Separate variables correctly and attempt integration of each side

Obtain $(2A-5)^{\frac{1}{2}} = \dots$ or equivalent

Obtain $= kt$ or equivalent

Use $t = 0$ and $A = 7$ to find value of arbitrary constant

Obtain $C = 3$ or equivalent

Use $t = 10$ and $A = 27$ to find t

Obtain $t = 0.4$ or equivalent

Substitute $t = 20$ and values for $t = 0.4$ to find value of $t = 0.4$ or equivalent

Obtain $t = 0.4$ or equivalent

Substitute $t = 20$ and values for $t = 0.4$ to find value of $t = 0.4$ or equivalent

Obtain $t = 0.4$ or equivalent

Substitute $t = 0.4$ or equivalent

Obtain $t = 0.4$ or equivalent

Substitute $t = 0.4$ or equivalent

Obtain $t = 0.4$ or equivalent

Substitute $t = 0.4$ or equivalent

Obtain $t = 0.4$ or equivalent

Substitute $t = 0.4$ or equivalent

Obtain $t = 0.4$ or equivalent

Obtain $t = 0.4$ or equivalent

Substitute $t = 0.4$ or equivalent

Obtain $t = 0.4$ or equivalent

B1 [1]

Q24.

Separate variables and attempt integration of at least one side M1Obtain term ln(x+1)A1 Obtain term k ln sin 2θ , where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$ M1Obtain correct term $\frac{1}{2} \ln \sin 2\theta$ A1 Evaluate a constant, or use limits $\theta = \frac{1}{12}\pi$, x = 0 in a solution containing terms $a \ln(x + 1)$ and M1 $b \ln \sin 2\theta$ Obtain solution in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$) A1√ Rearrange and obtain $x = \sqrt{(2\sin 2\theta)} - 1$, or simple equivalent A1 [7]

Q25.

(i) Use any relevant method to determine a constant M1Obtain one of the values A = 3, B = 4, C = 0A1 Obtain a second value A1 Obtain the third value A1 [4] B1√ (ii) Integrate and obtain term $-3 \ln(2-x)$ Integrate and obtain term $k \ln(4 + x^2)$ M1 Obtain term $2 \ln(4 + x^2)$ A1√ Substitute correct limits correctly in a complete integral of the form $a \ln(2-x) + b \ln(4+x^2), ab \neq 0$ M1Obtain given answer following full and correct working A1 [5]

Q26.

4	(i)	Separate variables and attempt integration on both sides	M1*	
		Obtain $2N^{0.5}$ on left-hand side or equivalent	A1	
		Obtain $-60e^{-0.02t}$ on right-hand side or equivalent	A1	
		Use 0 and 100 to evaluate a constant or as limits in a solution containing terms $aN^{0.5}$ and $be^{-0.02t}$	DM1*	
		Obtain $2N^{0.5} = -60e^{-0.02t} + 80$ or equivalent	A1	
		Conclude with $N = (40 - 30e^{-0.02t})^2$ or equivalent	A1	[6]
	(ii)	State number approaches 1600 or equivalent, following expression of form $(c + de^{-0.02t})^n$	В1√	[1]

Q27.

10	(i)	State	or imply $\frac{du}{dx} = \sec^2 x$	B1	
		Expr	ess integrand in terms of u and du	MI	
		Integ	erate to obtain $\frac{u^{n+1}}{n+1}$ or equivalent	A1	
		Subs	titute correct limits correctly to confirm given result $\frac{1}{n+1}$	A1	[4]
	(ii)	(a)	Use $\sec^2 x = 1 + \tan^2 x$ twice	M1	
			Obtain integrand $\tan^4 x + \tan^2 x$	A1	
			Apply result from part (i) to obtain $\frac{1}{3}$	A1	[3]
			Or Use $\sec^2 x = 1 + \tan^2 x$ and the substitution from (i)	M1	
			Obtain $\int u^2 du$	A1	
			Apply limits correctly and obtain $\frac{1}{3}$	A1	
		(b)	Arrange, perhaps implied, integrand to $t^9 + t^7 + 4(t^7 + t^5) + t^5 + t^3$	B1	
			Attempt application of result from part (i) at least twice	M1	
			Obtain $\frac{1}{8} + \frac{4}{6} + \frac{1}{4}$ and hence $\frac{25}{24}$ or exact equivalent	Al	[3]

Q28.

6	Separate variables correctly and attempt integration of one side	B1	
	Obtain term $\ln x$	B1	
	State or imply and use a relevant method to find A or B	M1	
	1 1		
	Obtain $A = \overline{2}$, $B = \overline{2}$		
	1 1		
	Integrate and obtain $-\overline{2} \ln (1-y) + \overline{2} \ln (1+y)$, or equivalent	A1 √	
	[If the integral is directly stated as k_1 ln or k_2 ln give M1, and then A2 for		
	1 1		
	$k_1 = \overline{2} \text{ or } k_2 = -\overline{2}$		
	Evaluate a constant, or use limits $x = 2$, $y = 0$ in a solution containing terms $a \ln x$, $b \ln (1 - y)$		
	and $c \ln (1 + y)$, where $abc \neq 0$	M1	
	[This M mark is not available if the integral of $1/(1-y^2)$ is initially taken to be of the form		
	$k \ln (1 - y^2)$		
	1		
	Obtain solution in any correct form, e.g. $\overline{2} \ln = \ln x - \ln 2$	A1	
	Rearrange and obtain $y = 0$, or equivalent, free of logarithms	A1	[8]

Q29.

4 Separate variables correctly and integrate one side
Obtain $\ln y = ...$ or equivalent
Al
Obtain $= 3\ln(x^2 + 4)$ or equivalent
Evaluate a constant or use x = 0, y = 32 as limits in a solution
containing terms $a \ln y$ and $b \ln(x^2 + 4)$ Obtain $\ln y = 3\ln(x^2 + 4) + \ln 32 - 3\ln 4$ or equivalent
Al
Obtain $y = \frac{1}{2}(x^2 + 4)$ or equivalent
Al [6]

Q30.

7 (i) State or imply $du = 2\cos 2x dx$ or equivalent **B**1 Express integrand in terms of u and du M1 Obtain $\int_{2}^{1} u^{3} (1-u^{2}) du$ or equivalent A1 Integration to obtain an integral of the form $k_1 u^4 + k_2 u^6$, k_1 , $k_2 \neq 0$ M1 Use limits 0 and 1 or (if reverting to x) 0 and $\frac{1}{4}\pi$ correctly DM1 Obtain $\frac{1}{24}$, or equivalent A1 [6] Use 40 and upper limit from part (i) in appropriate calculation M1 Obtain k = 10 with no errors seen A1 [2]

Q31.

3	EITHER	: Integrate by parts and reach $kx^{\frac{1}{2}} \ln x - m \int x^{\frac{1}{2}} \cdot \frac{1}{x} dx$	MI*	
		Obtain $2x^{\frac{1}{2}} \ln x - 2 \int \frac{1}{x^{\frac{1}{2}}} dx$, or equivalent	Al	
		Integrate again and obtain $2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}}$, or equivalent Substitute limits $x = 1$ and $x = 4$, having integrated twice Obtain answer $4(\ln 4 - 1)$, or exact equivalent	Al Ml(dep*) Al	
	OR1:	Using $u = \ln x$, or equivalent, integrate by parts and reach $kue^{\frac{1}{2}u} - m \int e^{\frac{1}{2}u} du$	MI*	
		Obtain $2ue^{\frac{1}{2}u} - 2\int e^{\frac{1}{2}u} du$, or equivalent	Al	
		Integrate again and obtain $2ue^{\frac{1}{2}u} - 4e^{\frac{1}{2}u}$, or equivalent Substitute limits $u = 0$ and $u = \ln 4$, having integrated twice Obtain answer $4\ln 4 - 4$, or exact equivalent	Al Ml(dep*) Al	
	OR2:	Using $u = \sqrt{x}$, or equivalent, integrate and obtain $ku \ln u - m \int u \cdot \frac{1}{u} du$	MI*	
		Obtain $4u \ln u - 4 \int du$, or equivalent	Al	
		Integrate again and obtain $4u \ln u - 4u$, or equivalent Substitute limits $u = 1$ and $u = 2$, having integrated twice or quoted $\int \ln u du$	Al	
	OR3:	as $u \ln u \pm u$ Obtain answer $8 \ln 2 - 4$, or exact equivalent Integrate by parts and reach $I = \frac{x \ln x \pm x}{\sqrt{x}} + k \int \frac{x \ln x \pm x}{x \sqrt{x}} dx$	M1(dep*) A1 M1*	
	OIG.	Obtain $I = \frac{x \ln x - x}{\sqrt{x}} + \frac{1}{2}I - \frac{1}{2}\int \frac{1}{\sqrt{x}} dx$	AI	
		Integrate and obtain $I = 2\sqrt{x} \ln x - 4\sqrt{x}$, or equivalent Substitute limits $x = 1$ and $x = 4$, having integrated twice	Al Ml(dep*)	
		Obtain answer 4ln4-4, or exact equivalent	Al	[5]
82.				
5	(i)	Use Pythagoras	MI MI	

Q32.

3

	Obtain the given result	Al	[3]
(ii)	Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain integral of the	form	
	$p \ln \tan \theta$	M1*	
	Obtain indefinite integral $\frac{1}{2}\ln\sin\theta - \frac{1}{2}\ln\cos\theta$, or equivalent, or $\frac{1}{2}\ln\tan\theta$	Al	
	Substitute limits correctly	M1(dep)*	
	Obtain the given answer correctly having shown appropriate working	A1	[4]

Q33.

10 (i) State or imply
$$V = \pi h^3$$

State or imply
$$\frac{dV}{dt} = -k\sqrt{h}$$

Use
$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$
, or equivalent M1

[The M1 is only available if $\frac{dV}{dh}$ is in terms of h and has been obtained by a correct method.]

[Allow B1 for $\frac{dV}{dt} = k\sqrt{h}$ but withhold the final A1 until the polarity of the constant

$$\frac{k}{3\pi}$$
 has been justified.]

(ii) Separate variables and integrate at least one side M1

Obtain terms
$$\frac{2}{5}h^{\frac{5}{2}}$$
 and $-At$, or equivalent A1

Use
$$t = 0$$
, $h = H$ in a solution containing terms of the form $ah^{\frac{5}{2}}$ and $bt + c$ M1

Use
$$t = 60$$
, $h = 0$ in a solution containing terms of the form $ah^{\frac{5}{2}}$ and $bt + c$ M1

Obtain a correct solution in any form, e.g.
$$\frac{2}{5}h^{\frac{5}{2}} = \frac{1}{150}H^{\frac{5}{2}}t + \frac{2}{5}H^{\frac{5}{2}}$$
 A1

- (ii) Obtain final answer $t = 60 \left(1 \left(\frac{h}{H} \right)^{\frac{5}{2}} \right)$, or equivalent A1 [6]
- (iii) Substitute $h = \frac{1}{2}H$ and obtain answer t = 49.4 B1 [1]

Q34.

2 Carry out complete substitution including the use of
$$\frac{du}{dx} = 3$$
 M1

Obtain
$$\int \left(\frac{1}{3} - \frac{1}{3u}\right) du$$
 A1

Integrate to obtain form
$$k_1u + k_2 \ln u$$
 or $k_1u + k_2 \ln 3u$ where $k_1k_2 \neq 0$ M1

Obtain
$$\frac{1}{3}(3x+1) - \frac{1}{3}\ln(3x+1)$$
 or equivalent, condoning absence of modulus signs and $+c$ A1 [4]

Q35.

10 Use $2\cos^2 x = 1 + \cos 2x$ or equivalent BI Separate variables and integrate at least one side MI Obtain $\ln(y^3 + 1) = \dots$ or equivalent Al Obtain ... = $2x + \sin 2x$ or equivalent Al Use x = 0, y = 2 to find constant of integration (or as limits) in an expression containing at least two terms of the form $a \ln(y^3 + 1)$, bx or $c \sin 2x$ M1* Obtain $\ln(y^3 + 1) = 2x + \sin 2x + \ln 9$ or equivalent e.g. implied by correct constant Al Identify at least one of $\frac{1}{2}\pi$ and $\frac{3}{2}\pi$ as x-coordinate at stationary point BI Use correct process to find y-coordinate for at least one x-coordinate M1(d*M) Obtain 5.9 A1 Obtain 48.1 AI [10]

Q36.

2 State
$$\frac{du}{dx} = 3\sec^2 x$$
 or equivalent B1

Express integral in terms of u and du (accept unsimplified and without limits) M1

Obtain $\int \frac{1}{3} u^{\frac{1}{2}} du$ A1

Integrate $Cu^{\frac{1}{2}}$ to obtain $\frac{2C}{3}u^{\frac{3}{2}}$ M1

Obtain $\frac{14}{9}$ A1 [5]

Q37.

4	Separate variables correctly and recognisable attempt at integration of at least one side	M1	
	Obtain lny, or equivalent	B1	
	Obtain $k \ln(2 + e^{3x})$	B1	
	Use $y(0) = 36$ to find constant in $y = A(2 + e^{3x})^k$ or $\ln y = k \ln(2 + e^{3x}) + c$ or equivalent	M1*	
	Obtain equation correctly without logarithms from $\ln y = \ln \left(A \left(2 + e^{3x} \right)^k \right)$	*M1	
	Obtain $y = 4(2 + e^{3x})^2$	A1	[6]

Q38.

5	Sep	arate variables correctly and attempt integration of at least one side	B1	
	Obt	ain term in the form $a\sqrt{(2x+1)}$	M1	
	Exp	ress $1/(\cos^2\theta)$ as $\sec^2\theta$	B 1	
		ain term of the form $k \tan \theta$	M1	
	Eva	luate a constant, or use limits $x = 0$, $\theta = \frac{1}{4}\pi$ in a solution with terms $a\sqrt{(2x+1)}$ and $k \tan \theta$,		
	ak ≠	<u> </u>	M1	
	Obt	ain correct solution in any form, e.g. $\sqrt{(2x+1)} = \frac{1}{2} \tan \theta + \frac{1}{2}$	A1	
	Rea	rrange and obtain $x = \frac{1}{8}(\tan \theta + 1)^2 - \frac{1}{2}$, or equivalent	A1	7
Q39	•			
8	(i)	Use a correct method for finding a constant	M1	
		Obtain one of $A = 3$, $B = 3$, $C = 0$	A1	
		Obtain a second value Obtain a third value	A1 A1	4
	(ii)		B1√	
		Integrate and obtain term of the form $k \ln(2+x^2)$	M1	
		Obtain term $\frac{3}{2}\ln(2+x^2)$	A1 [∧]	
		Substitute limits correctly in an integral of the form $a \ln(2-x) + b \ln(2+x^2)$, where $ab \neq 0$	M1	
		Obtain given answer after full and correct working	A1	5
Q40).			
2	(i)	State or imply ordinates 2, 1.1547, 1, 1.1547	B 1	
		Use correct formula, or equivalent, with $h = \frac{1}{6}\pi$ and four ordinates	M1	
		Obtain answer 1.95	A1	[3]
	(ii)	Make recognisable sketch of $y = \csc x$ for the given interval	B 1	
		Justify a statement that the estimate will be an overestimate	R1	[2]

Q41.

7	(i)	Separate variables correctly and attempt to integrate at least one side Obtain term $\ln R$ Obtain $\ln x - 0.57x$ Evaluate a constant or use limits $x = 0.5$, $R = 16.8$, in a solution containing terms of the form $a \ln R$ and $b \ln x$	B1 B1 B1	
		Obtain correct solution in any form	Al	
		Obtain a correct expression for R, e.g. $R = xe^{(3.80 - 0.57x)}$, $R = 44.7xe^{-0.57x}$ or		
		$R = 33.6xe^{(0.285 - 0.57x)}$	Al	[6]
	(ii)	Equate $\frac{dR}{dx}$ to zero and solve for x	MI	
		State or imply $x = 0.57^{-1}$, or equivalent, e.g. 1.75 Obtain $R = 28.8$ (allow 28.9)	Al Al	[3]
Q42	•			
6	(i)			
		Use correct formula or equivalent with $h = 0.1$ and four y values A Obtain 0.255 with no errors seen A		[3]
	(ii)	Obtain or imply $a = -6$	1	
		Obtain x^4 term including correct attempt at coefficient M Obtain or imply $b = 27$ A		
		Either Integrate to obtain $x - 2x^3 + \frac{27}{5}x^5$, following their values of a and b	^	
		Obtain 0.259 B	1	
		Or Use correct trapezium rule with at least 3 ordinates M Obtain 0.259 (from 4) A		[5]
		Obtain 0.237 (Holli4)		[2]
Q43				
8	(i)	Sensibly separate variables and attempt integration of at least one side M1		
		Obtain $2y^{\frac{1}{2}} =$ or equivalent A1		
		Correct integration by parts of $x \sin \frac{1}{3}x$ as far as $ax \cos \frac{1}{3}x \pm \int b \cos \frac{1}{3}x dx$ M1		

Obtain $y = \left(-\frac{3}{10}x\cos\frac{1}{3}x + \frac{9}{10}\sin\frac{1}{3}x + c\right)^2$ or equivalent A1 [6]

A1

A1

Obtain $-3x\cos\frac{1}{3}x + \int 3\cos\frac{1}{3}x dx$ or equivalent

Obtain $-3x\cos\frac{1}{3}x + 9\sin\frac{1}{3}x$ or equivalent

(ii) Use x = 0 and y = 100 to find constant M*1
Substitute 25 and calculate value of yObtain 203

M*1
A1 [3]

Q44.

10 State or imply
$$\frac{du}{dx} = e^x$$
 B1

Substitute throughout for x and dx M1

Obtain
$$\int \frac{u}{u^2 + 3u + 2} du$$
 or equivalent (ignoring limits so far)

State or imply partial fractions of form
$$\frac{A}{u+2} + \frac{B}{u+1}$$
, following their integrand B1

Carry out a correct process to find at least one constant for their integrand M1

Obtain correct
$$\frac{2}{u+2} - \frac{1}{u+1}$$

Integrate to obtain
$$a \ln(u+2) + b \ln(u+1)$$
 M1

Obtain
$$2\ln(u+2) - \ln(u+1)$$
 or equivalent, follow their A and B

Apply appropriate limits and use at least one logarithm property correctly M1

Obtain given answer
$$\ln \frac{8}{5}$$
 legitimately A1 [10]

SR for integrand
$$\frac{u^2}{u(u+1)(u+2)}$$

State or imply partial fractions of form
$$\frac{A}{u} + \frac{B}{u+1} + \frac{C}{u+2}$$
 (B1)

Obtain correct
$$\frac{2}{u+2} - \frac{1}{u+1}$$
 (A1)

...complete as above.