		32
Page 1	Mark Scheme	5 6
	MATHEMATICS – JUNE 2003	97 82
		'S.
	Mark Scheme Notes	124
arks are of the fo	llowing three types:	Sec
marks are no	, awarded for a valid method applied to the t lost for numerical errors, algebraic slips or a not usually sufficient for a candidate just to	r errors in units.

Mark Scheme Notes

- Marks are of the following three types:
 - Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
 - Accuracy mark, awarded for a correct answer or intermediate step correctly А obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
 - В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 2	Mark Scheme
	MATHEMATICS – JUNE 2003

- The following abbreviations may be used in a mark scheme or used on the script
 - AEF Any Equivalent Form (of answer is equally acceptable)
- www.papaCambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 - Benefit of Doubt (allowed when the validity of a solution may not be BOD absolutely clear)
 - Correct Answer Only (emphasising that no "follow through" from a CAO previous error is allowed)
 - CWO Correct Working Only – often written by a 'fortuitous' answer
 - ISW Ignore Subsequent Working
 - MR Misread
 - PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 - SOS See Other Solution (the candidate makes a better attempt at the same question)
 - SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ "marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS Paper 1 (Pure 1)

		424
0	Scheme	Syllabu 7.0
A AND AS LEV	VEL – JUNE	2003 9709 Bac
		177
1. $(2x - 1/x)^5$. 4 th term needed. $\rightarrow {}_5C_3 = 5.4/2$ $\rightarrow x 2^2 x (-1)^3$ $\rightarrow -40$	M1 DM1 A1 [3]	$\begin{array}{c c} & \textbf{Syllabt} \\ \hline \textbf{Syllabt} \hline \textbf{Syllabt} \\ \hline \textbf{Syllabt} \\ \hline \textbf{Syllabt} \hline \textbf{Syllabt} \\ \hline \textbf{Syllabt} \hline \textbf{Syllabt} \\ \hline \textbf{Syllabt} \hline S$
2. $\sin 3x + 2\cos 3x = 0$ $\tan 3x = -2$ x = 38.9 (8) and $x = 98.9$ (8) and $x = 158.9$ (8) MB. $\sin^2 3x + \cos^2 3x = 0$ etc. M0 But $\sin^2 3x = (-2\cos 3x)^2$ plus use of $s^2 + c^2 = 1$ is OK Alt. $\sqrt{5}\sin(3x + \alpha)$ or $\sqrt{5}\cos(3x - \alpha)$ boook	M1 A1 A1√ A1√ [4]	Use of tan = sin ÷ cos with 3x Co For 60 + "his" For 120 + "his" and no others in range (ignore excess ans. outside range) Loses last A mark if excess answers in the range
3. (a) dy/dx = $4 - 12x^{-3}$	B2, 1 [2]	One off for each error (4, -, 12, -3)
(b) $\int = 2x^2 - 6x^{-1} + c$	3 x B1 [3]	One for each term – only give +c if obvious attempt at integration
(a) (quotient OK M1 correct formula, A co)	1	
4. $a = -10 a + 14d = 11 d = \frac{3}{2}$	M1	Using a = (n – 1)d
a + (n – 1)d = 41 n = 35	M1 A1	Correct method – not for a + nd Co
Either S _n = n/2(2a + (n −1)d) or n/2(a + = 542.5	- I) M1 A1 [5]	Either of these used correctly For his d and any n
5. (i) $2a + b = 1$ and $5a + b = 7$ $\rightarrow a = 2$ and $b = -3$	M1 A1 [2]	Realising how one of these is formed Co
(ii) $f(x) = 2x - 3$ $ff(x) = 2(2x - 3)$ $\rightarrow 4x - 9$ = 0 when x = 2.25)-3 M1 DM1 A1 [3]	Replacing "x" by "his ax + b" and "+b" For his a and b and solved = 0 Co

		4744
Page 2 Mark Sc A AND AS LEVEI		Syllabu 2003 9709
		2003 5105 ~aCa
(i) $-\pi$ π x	B2, 1 [2]	Syllabu20039709For complete cycle, shape including curves, not lines, -3 to +3 shown or implied, for $-\pi$ to π . Degrees ok
(ii) $x = \pi/2$, $y = 3$ (allow if 90°) $\rightarrow k = 6/\pi$ co.	M1 A1 [2]	Realising maximum is $(\pi/2, 3)$ + sub Co (even if no graph)
(iii) (- $\pi/2$, -3) – must be radians	B1 [1]	Co (could come from incorrect graph)
(i) $L_1 \xrightarrow{YY} A \xrightarrow{L_2} B \xrightarrow{(7/4)} \times$		
Gradient of $L_1 = -2$ Gradient of $L_2 = \frac{1}{2}$ Eqn of $L_2 y - 4 = \frac{1}{2}(x - 7)$	B1 M1 M1A1√ [4]	Co – anywhere Use of $m_1m_2 = -1$ Use of line eqn – or y = mx + c. Line must be through (7, 4) and non- parallel
(ii) Sim Eqns $\rightarrow x = 3, y = 2$	M1 A1	Solution of 2 linear eqns Co
AB = $\sqrt{(2^2 + 4^2)} = \sqrt{20}$ or 4.47	M1A1 [4]	Correct use of distance formula. Co
(i) $\overrightarrow{BA} = \mathbf{a} - \mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = -2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ Dot product = $-2 + 8 - 6 = 0$ \rightarrow Perpendicular	M1 M1A1 A1 [4]	Knowing how to use position vector for \overrightarrow{BA} or \overrightarrow{BC} – not for \overrightarrow{AB} or \overrightarrow{CB} Knowing how to use $x_1y_1 + x_2y_2 + x_3y_3$. Co Correct deduction. Beware fortuitous (uses \overrightarrow{AB} or \overrightarrow{CB} – can get 3 out of 4)
(ii) $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = -2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ $\overrightarrow{AD} = \mathbf{d} - \mathbf{a} = -5\mathbf{i} + 10\mathbf{j} + 5\mathbf{k}$ These are in the same ratio \	M1	Knowing how to get one of these
parallel	M1	Both correct + conclusion. Could be dot product = $60 \rightarrow \text{angle} = 0^{\circ}$
Ratio = 2:5 (or √24: √150)	M1A1 [4]	Knowing what to do. Co. Allow 5:2

Page 3	age 3 Mark Scheme Syllabu			
	A AND AS LEVEL	– JUNE	2003 9709 Pag	
-	B 8 0 c		Syllabb 2003 9709 Phace Phac Phace Phace Phac Phac Phac Phac Phac Phace Phac Phac Phac Phac Phac Phac Phac Phac	
	θ = 1 angle BOC = π - θ Area = $\frac{1}{2}r^2\theta$ = 68.5 or 32(π -1) (or $\frac{1}{2}$ circle-sector)	B1 M1 A1 [3]	For π - θ or for $\frac{1}{2}\pi r^2$ – sector Use of $\frac{1}{2}r^2\theta$ Co NB. 32 gets M1 only	
(ii)	$8 + 8 + 8\theta = \frac{1}{2}(8 + 8 + 8(\pi - \theta))$ Solution of this eqn	M1 M1	Relevant use of s = rθ twice Needs θ – collected – needs perimeters	
	\rightarrow 0.381 or ¹ / ₃ (π -2)	A1 [3]	Co.	
(iii)	$\theta = \pi/3$ AB = 8cm BC = 2 x 8sin $\pi/3$ = 8 $\sqrt{3}$	B1 M1	Co. Valid method for BC – cos rule, Pyth allow decimals here	
	Perimeter = 24 + $8\sqrt{3}$	A1 [3]	Everything OK. Answer given NB. Decimal check loses this mark	
. y =	= √(5x + 4)			
	dy/dx = $\frac{1}{2}(5x + 4)^{-\frac{1}{2}} \times 5$ x = 1, dy/dx = 5/6	B1B1 B1 [3]	$\frac{1}{2}(5x + 4)^{-\frac{1}{2}} \times 5$ B1 for each part Co	
	$dy/dt = dy/dx \times dx/dt$ = 5/6 x 0.03	M1	Chain rule correctly used	
	→ 0.025	A1√ [2]	For (i) x 0.03	
(iii)) realises that area \rightarrow integration	M1	Realisation + attempt – must be (5x + 4) ^k	
	$\int = (5x+4)^{3/2} \div {}^{3}/_{2} \div 5$	A1A1	For $(5x + 4)^{3/2} \div {}^{3}/_{2}$. For $\div 5$	
	Use of limits → 54/15 - 16/15 = 38/15 = 2.53	DM1 A1 [5]	Must use "0" to "1" Co	

			Man .
Page 4	Mark Sch A AND AS LEVEL		Syllabu 2003 9709
L	A AND AS LEVEL		2003 3709 Yacan
equ →	$-x^{2} = a - x^{2} - b^{2} - 2bx + uatingb = -4b^{2} = 16 (i.e. 16 - (x - 4)^{2})$	M1 B1 A1 [3]	Syllabu 2003 9709 Knows what to do – some equating Anywhere – may be independent For 16- () ²
	/dx = 8 – 2x = o when → (4, 16) (or from –b and a)	M1 A1 [2]	Any valid complete method Needs both values
x ² Ei In	$x - x^2 \ge -20$ $x^2 - 8x - 20 = (x - 10)(x + 2)$ and values -2 and 10 terval -2≤x≤10 $\Rightarrow 8x - x^2$ for x≥4	M1 A1 A1 [3]	Sets to 0 + correct method of solution Co – independent of < or > or = Co – including \leq (< gets A0)
	tomain of g^{-1} is $x \le 16$ unge of g^{-1} is $g^{-1} \ge 4$	B1√ B1 [2]	From answer to (i) or (ii). Accept <16 Not f.t since domain of g given
(v) y =	$= 8x - x^2 \rightarrow x^2 - 8x + y = 0$	M1	Use of quadratic or completed square expression to make x subject
g ⁻¹	$ 8 \pm \sqrt{64 - 4y} \div 2 (x) = 4 + \sqrt{16 - x} 16 - y → x = 4 + \sqrt{16 - y} → y = 4 + \sqrt{16 - x} $	DM1 A1 [3]	Replaces y by x Co (inc. omission of -)

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS Paper 2 (Pure 2)

Page 1	Mark Scheme Syllabu	
	A AND AS LEVEL – JUNE 2003 9709	2
	Mark SchemeSyllabutA AND AS LEVEL – JUNE 20039709State or imply non-modular inequality $(x - 4)^2 > (x + 1)^2$, or corresponding equation Expand and solve a linear inequality, or equivalent Obtain critical value $1\frac{1}{2}$ State correct answer $x < 1\frac{1}{2}$ (allow \leq)	an
EITHER:	State or imply non-modular inequality $(x - 4)^2 > (x + 1)^2$, or corresponding equation	
	Expand and solve a linear inequality, or equivalent	M1
	Obtain critical value 1 ¹ / ₂	A1
	State correct answer $x < 1\frac{1}{2}$ (allow \leq)	A1
OR:	State a correct linear equation for the critical value e.g. $4 - x = x + 1$	B1
	Solve the linear equation for x	M´ A´
	Obtain critical value $1\frac{1}{2}$, or equivalent State correct answer $x < 1\frac{1}{2}$	A A
OR:	State the critical value 1 ¹ / ₂ , or equivalent, from a graphical method or by	
UN.	inspection or by solving a linear inequality	B3
	State correct answer $x < 1\frac{1}{2}$	B1
		[4]
	Expand <i>RHS</i> and obtain at least one equation for <i>a</i>	M1
<i>ц стпс</i> .	Obtain $a^2 = 9$ and $2a = 6$, or equivalent	A1
	State answer <i>a</i> = 3 only	A1
OR:	Attempt division by $x^2 + ax + 1$ or $x^2 - ax - 1$, and obtain an equation in <i>a</i> Obtain $a^2 = 9$ and either $a^3 - 1$ la + 6 = 0 or $a^3 - 7a - 6 = 0$, or equivalent	M1
	State answer $a = 3$ only	A1
	[Special case: the answer $a = 3$, obtained by trial and error, or by	
	inspection, or with no working earns B2.]	[3]
ii)	Substitute for <i>a</i> and attempt to find zeroes of one of the quadratic factor	sM1
,	Obtain one correct answer	A
	State all four solutions ½(-3 ± $\sqrt{5}$) and ½(3 ± $\sqrt{13}$), or equivalent	A1
		[3]
i)	State or imply indefinite integral of e^{2x} is $\frac{1}{2}e^{2x}$, or equivalent	B1
·,	Substitute correct limits correctly	M1
	Obtain answer $R = \frac{1}{2} e^{2p} - \frac{1}{2}$, or equivalent	A1
		[3]
i)	Substitute $R = 5$ and use logarithmic method to obtain an equation	
-	in 2p	M1'
	Solve for p M1 (d Obtain answer $p = 1.2$ (1.1989)	ep*) A1
	$-25.411 \text{ driswer } p = 1.2 (1.1000 \dots)$	
		[3]

	yllabu ??
A AND AS LEVEL – JUNE 2003	9709 Da
(A + B) formula to obtain an equation in terms	yllabu 9709 RahaCann A M1 A1
(i) Use $\tan (A \pm B)$ formula to obtain an equation in $\tan x$ $\tan x + 1$ $(1 - \tan x)$	
State equation $\frac{\tan x + 1}{1 - \tan x} = 4 \frac{(1 - \tan x)}{1 + \tan x}$, or equivalent	A
Transform to a 2- or 3-term quadratic equation Obtain given answer correctly	M1 A1
Obtain given answer correctly	
	[4]
(ii) Solve the quadratic and calculate one angle, or establis	
t = ${}^{1}/_{3}$, 3 (only) Obtain one answer, e.g. x = 18.4° ± 0.1°	M1 A1
Obtain second answer $x = 71.6^{\circ}$ and no others in the ra	
[Ignore answers outside the given range]	[3]
 (i) Make recognizable sketch over the given range of two graphs, e.g. <i>y</i> =1n <i>x</i> and <i>y</i> = 2 - <i>x</i>² State or imply link between intersections and roots and given answer (ii) Consider sign of ln <i>x</i> - (2 - <i>x</i>²) at <i>x</i> = 1 and <i>x</i> = 1.4, or e Complete the argument correctly with appropriate calc (iii) Use the given iterative formula correctly with 1≤ <i>x_n</i> ≤1 Obtain final answer 1.31 Show sufficient iterations to justify its accuracy to 2d.p or show there is a sign change in the interval (1.305, 1) 	B1+B1 d justify B1 equivalent M1 ulation A1 [2] .4 M1 A1
(i) Attempt to apply the chain or quotient rule	M1
Obtain derivative of the form $\frac{k \sec^2 x}{(1 + \tan x)^2}$ or equivalent	A1
Obtain correct derivative $-\frac{\sec^2 x}{(1 + \tan x)^2}$ or equivalent	A1
(1 + tan <i>x</i>) ⁻ Explain why derivative, and hence gradient of the curv	e, is
always negative	A1
	[4]
i) State or imply correct ordinates: 1, 0.7071, 0.5	B1
Use correct formula, or equivalent, with $h = \frac{1}{8\pi}$ and the	ree ordinates M1

		4	in
Page 3	Mark Scheme	Syllabu	2.0
	A AND AS LEVEL – JUNE 2003	9709	No.
(iii)	Justify the statement that the rule gives an over-estin	mate	www.BabaCambridge.com
7 (i)	State $\frac{dx}{d\theta}$ = 2 – 2cos 2 θ or $\frac{dy}{d\theta}$ = 2sin 2 θ		B1
	Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$		M1
	Obtain answer $\frac{dy}{dx} = \frac{2\sin 2\theta}{2 - 2\cos 2\theta}$ or equivalent		A1
	Make relevant use of sin 2A and cos 2A formulae		(indep.) M1
	Obtain given answer correctly		A1
			[5]
(ii)	Substitute $\theta = \frac{1}{4\pi} \text{ in } \frac{dy}{dx}$ and both parametric equat	tions	M1
	Obtain $\frac{dy}{dx} = 1, x = \frac{1}{2}\pi - 1, y = 2$		A1
	Obtain equation $y = x + 1.43$, or any exact equivaler	nt	A1√
			[3]

(iii)	State or imply that tangent is horizontal when $\theta = \frac{1}{2}\pi$ or $\frac{3}{2}\pi$	B1
	Obtain a correct pair of x, y or x- or y-coordinates	B1
	State correct answers $(\pi, 3)$ and $(3\pi, 3)$	B1

[3]

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS AND HIGHER MATHEMATICS Paper 3 (Pure 3)

Page 1	Mark Scheme Syllabus	~
	A AND AS LEVEL – JUNE 2003 9709/8719	No.
		Can .
		PapaCannon M1 M1 [2]
(i)	Use trig formulae to express <i>LHS</i> in terms of sin x and cos x	M1
	Use $\cos 60^\circ = \sin 30^\circ$ to reduce equation to given form $\cos x = k$	M1 🔳
		[2]
		[-]
(ii)	State or imply that $k = -\frac{1}{2}$ (accept -0.577 or -0.58)	A1
(")	State or imply that $k = -\frac{1}{\sqrt{3}}$ (accept -0.577 or -0.58)	
	Obtain answer x = 125.3° only	A1
	[Answer must be in degrees; ignore answers outside the given range	ə.]
	[SR: if $k = \frac{1}{\sqrt{3}}$ is followed by $x = 54.7^{\circ}$, give A0A1 $\sqrt{.}$]	
	$\sqrt{3}$	
		[2]
	State first step of the form $kxe^{2x} \pm \int ke^{2x} dx$	M1
	Complete the first step correctly	A1
	Substitute limits correctly having attempted the further integration	
	of ke^{2x} Obtain answer $\frac{1}{4}(e^2 + 1)$ or exact equivalent of the form $ae^2 + b$,	M1
	having used $e^0 = 1$ throughout	A1
		,
		[4]
EITHER	State or imply non-modular inequality $(x - 2)^2 < (3 - 2x)^2$, or	
	corresponding equation	B1
	Expand and make a reasonable solution attempt at a 2- or 3-term	
	quadratic, or equivalent Obtain critical value x = 1	M1 A1
	State answer $x < 1$ only	A1
OR	State the relevant linear equation for a critical value,	- ·
	i.e. $2 - x = 3 - 2x$, or equivalent	B1
	Obtain critical value $x = 1$ State answer $x < 1$	B1 B1
	State or imply by omission that no other answer exists	B1
		_ ·
OR	Obtain the critical value $x = 1$ from a graphical method, or by inspect	
	or by solving a linear inequality	B2
	State answer $x < 1$ State or imply by omission that no other answer exists	B1 B1

Page 2	Mark Scheme Syllabus	
	Mark SchemeSyllabusA AND AS LEVEL – JUNE 20039709/8719State or imply that $x - 2$ is a factor of $f(x)$ Substitute 2 for x and equate to zeroObtain answer $a = 8$ [The statement $(x - 2)^2 = x^2 - 4x + 4$ earns B1.]	Day
i) EITHER	State or imply that $x - 2$ is a factor of $f(x)$	B
	Substitute 2 for x and equate to zero Obtain answer $a = 8$	
	$\frac{1}{2}$	
	[The statement $(x - 2)^2 = x^2 - 4x + 4$ earns B1.]	
OR	Commence division by $x^2 - 4x + 4$ and obtain partial quotient $x^2 + 2x$	B1
	Complete the division and equate the remainder to zero	M
	Obtain answer <i>a</i> = 8	A
OR	Commence inspection and obtain unknown factor $x^2 + 2x + c$	B
	Obtain $4c = a$ and an equation in c Obtain answer $a = 8$	M A1
i) EITHER	Substitute <i>a</i> = 8 and find other factor $x^2 + 2x + 2$ by inspection	
	or division State that $y^2 = 4x + 4 \ge 0$ for all y (condense > for \ge)	B1
	State that $x^2 - 4x + 4 \ge 0$ for all x (condone > for \ge) Attempt to establish sign of the other factor	B1 M1
	Show that $x^2 + 2x + 2 > 0$ for all x and complete the proof	A1
	[An attempt to find the zeros of the other factor earns M1.]	
OR	Equate derivative to zero and attempt to solve for <i>x</i>	M1
	Obtain $x = -\frac{1}{2}$ and 2	A1
	Show correctly that $f(x)$ has a minimum at each of these values Having also obtained and considered $x = 0$, complete the proof	A1 A1
(i)	State or imply $w = \cos \frac{2}{3} \pi + i \sin \frac{2}{3} \pi$ (allow decimals)	B1
(-)	5 5	
	Obtain answer $uw = -\sqrt{3}$ - i (allow decimals)	B1
	Multiply numerator and denominator of $\frac{u}{w}$ by -1 - i $\sqrt{3}$, or equivalent	M
	Obtain answer $\frac{u}{w} = \sqrt{3}$ - i (allow decimals)	A1
	W	
(ii)	Show U on an Argand diagram correctly	B1
-	Show A and B in relatively correct positions	B1
iii)	Prove that $AB = UA$ (or UB), or prove that angle $AUB =$ angle ABU	
	(or angle BAU) or prove, for example, that $AO = OB$ and angle	- /
	$AOB = 120^{\circ}$, or prove that one angle of triangle UAB equals 60° Complete a proof that triangle UAB is equilateral	B1 B1
		U

[2]

		the second
Page 3	Mark Scheme	Syllabus
_	A AND AS LEVEL – JUNE 2003	9709/8719
6 (i) <i>EITHER</i>	State or imply $f(x) \equiv A + B + C$ 2x + 1 + B + C State or obtain $A = 1$ State or obtain $C = 8$ Use any relevant method to find B Obtain value $B = 4$	Syllabus 9709/8719 B1 B1 B1 M1 A1
OR	State or imply $f(x) \equiv \frac{A}{2x+1} + \frac{Dx + E}{(x-2)^2}$ State or obtain $A = 1$ Use any relevant method to find D or E Obtain value $D = 4$ Obtain value $E = 0$	B1 B1 M1 A1 A1

(ii) *EITHER* Use correct method to obtain the first two terms of the expansion of $(1 + 2x)^{-1}$ or $(x - 2)^{-2}$ or $(1 - \frac{1}{2}x)^{-1}$ or $(1 - \frac{1}{2}x)^{-2}$ M1 Obtain any correct sum of unsimplified expansions up to the terms in x^2 (deduct A1 for each incorrect expansion) A2 $\sqrt{A1}$

[Unexpanded binomial coefficients involving -1 or -2, e.g. $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are not

sufficient for the M1.]

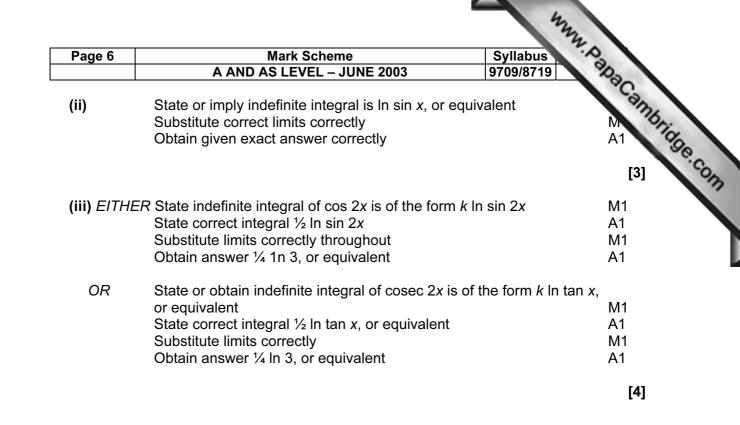
[f.t. is on A, B, C, D, E.]

[Apply this scheme to attempts to expand $(9x^2 + 4)(1+2x)^{-1}(x - 2)^{-2}$, giving M1A2 for a correct product of expansions and A1 for multiplying out and reaching the given answer correctly.]

[Allow attempts to multiply out $(1 + 2x)(x - 2)^2 (1 - x + 5x^2)$, giving B1 for reduction to a product of two expressions correct up to their terms in x^2 , M1 for attempting to multiply out as far as terms in x^2 , A1 for a correct expansion, and A1 for obtaining $9x^2 + 4$ correctly.]

[SR: *B* or *C* omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain *A*, *B*, or *C*, but no further marks. In part (ii) only the M1 and A1 $\sqrt{}$ for an unsimplified sum are available.]

[SR: *E* omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain *A* or *D*, but no further marks. In part (ii) award M1A2 $\sqrt{A1}$ as in the scheme.]


OR	Differentiate and evaluate f(0) and f'(0)	M1
	Obtain $f(0) = 1$ and $f'(0) = -1$	A1
	Differentiate and obtain $f''(0) = 10$	A1
	Form the Maclaurin expansion and obtain the given answer correctly	A1

[5]

Page 4	Mark Scheme Syllabus	0
	A AND AS LEVEL – JUNE 2003 9709/8719	Day
(i)	State or imply that $\frac{dx}{dt} = k (100 - x)$	рара Салир. В1 [2] M1
	Justify $k = 0.02$	B1
		[2]
(ii)	Separate variables and attempt to integrate $\frac{1}{100-x}$	M1
	Obtain term – In (100 - <i>x</i>), or equivalent	A1
	Obtain term 0.02 <i>t</i> , or equivalent Use <i>x</i> = 5, <i>t</i> = 0 to evaluate a constant, or as limits	A1 M1
	Obtain correct answer in any form, e.g. $-\ln(100 - x) = 0.02t - \ln 95$	A1
	Rearrange to give <i>x</i> in terms of <i>t</i> in any correct form, e.g. <i>x</i> = 100 - 95exp(-0.02 <i>t</i>)	A1
		[6]
	[SR: In (100 - x) for -In (100 - x). If no other error and $x = 100$ - 95ex equivalent obtained, give M1A0A1M1A0A1√]	xp(0.02 <i>t</i>) o
(iii)	State that <i>x</i> tends to 100 as <i>t</i> becomes very large	B1
		[1]
(i)	State derivative $\frac{1}{x} - \frac{2}{x^2}$, or equivalent	B1
	Equate 2-term derivative to zero and attempt to solve for x Obtain coordinates of stationary point (2, ln 2 +1), or equivalent	M1 A1+A1
	Determine by any method that it is a minimum point, with no incorrect work seen	A1
		[5]
		[0]
(ii)	State or imply the equation $\alpha = \frac{2}{3 - \ln \alpha}$	B1
	Rearrange this as 3 = In α + $\frac{2}{\alpha}$ (or <i>vice versa</i>)	B1
	ä	[2]
()	Line the iterative formula correctly at least once	
(iii)	Use the iterative formula correctly at least once Obtain final answer 0.56	M1 A1
	Show sufficient iterations to justify its accuracy to 2 d.p., or show	A 1
	there is a sign change in the interval (0.555, 0.565)	A1
(1)	State or imply a correct normal vestarity site or the state	[3]
(i)	State or imply a correct normal vector to either plane, e.g. i + 2 j - 2 k or 2 i - 3 j + 6 k	B1
	Carry out correct process for evaluating the scalar product of both	N 1 4
	the normal vectors Using the correct process for the moduli, divide the scalar product	M1
	of the two normals by the product of their moduli and evaluate the	
	inverse cosine of the result Obtain answer 40.4° (or 40.3°) or 0.705 (or 0.704) radians	M1 A1
	[Allow the obtuse answer 139.6° or 2.44 radians]	
		[4]

Page 5		Mark	Scheme		Syllabus "A	
l ugo o			EL – JUNE 2003		9709/8719	20 al
						"Ca
•	•	a complete stra uch a point e.g.	ategy for finding a (0, 3, 2)	point on <i>l</i>		npacambridge Manbridge B1
	EITHER	Set up two equ	ations for a direct	ion vector		
		-	<i>l</i> , e.g. <i>a</i> + 2 <i>b</i> - 2 <i>c</i>	= 0		5.4
		and $2a - 3b + 6$				
		Solve for one r	6: -10: -7, or equiv	valent		M1 A1
			answer, e.g. r = 3		(6 i - 10 i - 7 k)	A1√
	OR		nd point on <i>l</i> , e.g.	•		A1
			on vectors to obta		on vector for <i>l</i>	M1
		Obtain 6i - 10j	- 7k, or equivalen	t		A1
			answer, e.g. r = 3	-		A1√
	OR		the vector produc	t of the tw	o normal vectors	M1
			rect components	+		A1 A1
			- 7 k , or equivalen answer, e.g. r = 3		(6 i - 10 i - 7 k)	A1 A1√
				j • 2R • <i>R</i>		,,,,,
OR	Express	one variable in t	erms of a second			M1
		•	d expression, e.g.	• •		A1
	•		le in terms of the t	hird and fo	orm	N 4 4
		erm equation	plified expression		12 - 67)/7	M1
	in this eq			, c.y. x - (12 - 02)/1	A1
		ector equation f	or the line			M1
		-	(x) (0) (1			
	State a c	orrect answer, e	e.g. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ - \\ - \end{pmatrix}$	$\left \frac{-5/3}{-7/6} \right \lambda$	or equivalent	A1√
			erms of a second	(a =	\ / 2	M1
			d expression, e.g.		x)/3	A1
			e in terms of the so d expression, e.g.		7x)/6	M1 A1
		ector equation f		<u> م</u> (ا ک -		M1
				(1)		
	State a c	orrect answer	v = 3 + 2	_5/3	or equivalent	A1√
		onect answer, e	e.g. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \lambda$	-575,	or equivalent	
			(z) (2)	(-//6)		
						[6]
) (i) EITHER			e correct sin 2A fo			M1
			e correct cos 2A f	ormula		M1
	Derive t	he given result	correctly			A1
OR	Make re	elevant use of th	e tan 2A formula			M1
OR			e tan 2A formula + tan ² A = sec ² A	or cos ² A	+ sin ² A = 1	M1 M1

[3]

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS Paper 4 (Mechanics 1)

Page 1	Mark Scheme	Syllabus
	A AND AS LEVEL – JUNE 2003	9709

Mechanics 1

			42	2
Pa	ge 1		abus	".D
		A AND AS LEVEL – JUNE 2003 97	09	Pac
		Mechanics 1		N.PapaCambrid
	(i)	Tension is 8000 N or 800 <i>g</i> Accept 7840 N (from 9.8) or 7850 (from 9.81)	B1	1
	(ii)	For using $P = \frac{\Delta W}{\Delta t}$ or $P = Tv$	M1	
		$\Delta W = 8000 \times 20 \text{ or } v = \frac{20}{50}$	A1 ft	
		Power applied is 3200 W Accept 3140 W (from 9.8 or 9.81)	A1	3
		SR (for candidates who omit g)(Max 2 out of 3)P = $800 \times 20 \div 50$ B1Power applied is 320 WB1		
	(i) (a)	For resolving in the direction PQ	M1	
		Component is 2 x 10cos30° – 6cos60° or 14.3 N or $10\sqrt{3}$ – 3 N	A1	2
	(b)	Component is $\pm 6\cos 30^{\circ} - 6\cos 60^{\circ}$ or ± 5.20 N or $\pm 3\sqrt{3}$ N	B1	1
		SR (for candidates who resolve parallel to and perpendicular to the force of magnitude 6 N) (Max 2 out of 3)For resolving in both directionsM1For $X = 6 - 10\cos 30^\circ$ or -2.66 N and $Y = 10 + 10\sin 30^\circ$ or 15 NA1SR (for candidates who give a combined answer for (a) and (b))(Max 2 out of 3)For resolving in both directionsM1For ($6\cos 30^\circ$)i + ($2 \times 10\cos 30^\circ - 6\cos 60^\circ$)j or any vector equivalentA1		
	(ii)	For using Magnitude = $\sqrt{ans(i)^2 + ans(ii)^2}$ Magnitude is 15.2 N	M1 A1 ft	2
	(i)	ft only following sin/cos mix and for answer 5.66 N Region under $v = 2t$ from $t = 0$ to $t = T$ indicated	B1	1
		Ç		
	(ii)	For attempting to set up and solve an equation using area $\Delta = 16$ or for using $s = \frac{1}{2} 2t^2$	M1	
		For $16 = \frac{1}{2} 2T^2$	A1	
		<i>T</i> = 4	A1	3
		SR (for candidates who find the height of the Δ but donot score M1)(Max 1 out of 3)For $h/T = 2$ or $h = 2T$ or $v = 8$ B1		

P	age 2	Mark Scheme Sylla	bus	.D
	<u>uge -</u>	A AND AS LEVEL – JUNE 2003 970	09	SD2
				Ca.
	(iii)	For using distance = $10 \times ans$ (ii) or for using the idea that the distance is represented by the area of the relevant parallelogram or by the area of the trapezium (with parallel sides 9 and 4 and height 10) minus the area of the triangle (with base 5 and height 10)	M1	W. PapaCambridg
		Distance is 40m	A1 ft	2
4	(i)	For differentiating x	M1	
		$\dot{x} = t + \frac{1}{10}t^2$	A1	
		Speed is 20 ms ⁻¹	A1	3
	(ii)	$\ddot{x} = 1 + \frac{1}{5}t$	B1 ft	
		For attempting to solve $\ddot{x}(t) = 2\ddot{x}(0)$ $(1 + \frac{1}{5}t = 2)$	M1	
	+	<i>t</i> = 5	A1	3
5	(i)	For resolving forces on any two of <i>A</i> , or <i>B</i> , or <i>A</i> and <i>B</i> combined $(T_1 = W_A + T_2, T_2 = W_B, T_1 = W_A + W_B)$	M1	
		Tension in S_1 is 4 N or Tension in S_2 is 2 N Accept 0.4 <i>g</i> or 3.92 (from 9.8 or 9.81) for T_1 Tension in S_2 is 2 N or Tension in S_1 is 4 N Accept 0.2 <i>g</i> or 1.96 (from 9.8 or 9.81) for T_2	B1 A1	3
		SR (for candidates who omit g)(Max 1 out of 3) $T_1 = 0.4$ and $T_2 = 0.2$ B1		
	(ii)	For applying Newton's second law to <i>A</i> , or to <i>B</i> , or to <i>A</i> and <i>B</i> combined	M1	
		For any one of the equations $T + 2 - 0.4 = 0.2a$, 2 - T - 0.2 = 0.2a, 4 - 0.4 - 0.2 = 0.4a	A1	
		For a second of the above equations	A1	
		For solving the simultaneous equations for a and T	M1	
		Acceleration is 8.5 ms ⁻² , tension is 0.1 N Accept 8.3 from 9.8 or 8.31 from 9.81 SR (for candidates who obtain only the 'combined' equation) (Max 3 out of 5) For applying Newton's second law to A and B combined M1	A1	5
		For $4 - 0.4 - 0.2 = 0.4a$ A1 Acceleration is 8.5 ms ⁻² A1		

Pac	je 3	Mark Scheme Sylla	abus	.A.
	<u>j</u> e e		09	20
	(i)	For using $F = \mu R$ and $R = mg$ $(F = 0.025 \times 0.15 \times 10)$	M1	
		Frictional force is 0.0375 N or 3/80 N Accept 0.0368 from 9.8 or 9.81	Abus 09 M1 A1 M1	2
_	(ii)	For using $F = ma$ (-0.0375 = 0.15a) or $d = \mu g$	M1	
		Deceleration is 0.25 ms ⁻² (or $a = -0.25$) A.G.	A1	2
-	(iii)	For using $s = ut + \frac{1}{2}at^2$ $(s = 5.5 \times 4 + \frac{1}{2}(-0.25)16)$	M1	
		Distance <i>AB</i> is 20m	A1	2
-	(iv)	For using $v^2 = u^2 + 2as$ ($v^2 = 3.5^2 - 2 \times 0.25 \times 20$)	M1	
		Speed is 1.5 ms ⁻¹ (ft $\sqrt{(24.5 - (iii))/2}$)	A1 ft	2
-	(v)	Return dist. = $\frac{3.5^2}{2 \times 0.25}$ or distance beyond $A = \frac{(iv)^2}{2 \times 0.25}$	M1	
		Total distance is 44.5 m (ft 24.5 + (iii) or 2((iv) ² + (iii))	A1 ft	2
	(i)	PE gain = $mg(2.5sin60^{\circ})$	B1	
		For using KE = $\frac{1}{2} mv^2$	M1	
		For using the principle of conservation of energy $(\frac{1}{2}m8^2 - \frac{1}{2}mv^2 = mg(2.5sin60^\circ))$	M1	
		Alternative for the above 3 marks: For using Newton's Second Law or stating $a = -g \sin 60^{\circ}$ a = -8.66 (may be implied) For using $v^2 = u^2 + 2as$ $(v^2 = 64 - 2 \times 8.66 \times 2.5)$	M1* A1 M1dep*	
		Speed is 4.55 ms ⁻¹ Accept 4.64 from 9.8 or 9.81	A1	4
	(ii)	For using $\frac{1}{2} mu^2$ (>) $mg h_{max}$ ($\frac{1}{2} 8^2 > 10 h_{max}$)	M1	
		For obtaining 3.2m A.G.	A1	2
	(iii)	Energy is conserved or absence of friction or curve <i>BC</i> is smooth (or equivalent) and <i>B</i> and <i>C</i> are at the same height or the PE is the same at <i>A</i> and <i>B</i> (or equivalent)	B1	1

Page 4	Mark Scheme	Syllabus	·A
	A AND AS LEVEL – JUNE 2003	9709	Pac
			any.
(iv)	WD against friction is 1.4×5.2	B1	orid
	For WD = KE loss (or equivalent) used	M1	Papacambridge
	$1.4 \times 5.2 = \frac{1}{2}0.4(8^2 - v^2)$ or		
	$1.4 \times 5.2 = \frac{1}{2} 0.4((i)^2 - v^2) + 0.4 \times 10(2.5 \sin 60^\circ)$	A1	
	(12.8 or 4.14 + 8.66)		
	Alternative for the above 3 marks: For using Newton's Second Law	M1*	
	$0.4g(2.5\sin 60^\circ \div 5.2) - 1.4 = 0.4a \qquad (a = 0.6636)$		
	For using $v^2 = u^2 + 2as$ with $u \neq 0$		
	$(v^2 = 4.55^2 + 2 \times 0.6636 \times 5.2)$	M1dep*	
	Speed is 5.25 ms ⁻¹	A1	4

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

Page	1 Mark Scheme Syllabu A AND AS LEVEL – JUNE 2003 9709/87	us 719
	Mechanics 2	aCan
l	The distance from the centre to the rod is $\sqrt{25^2 - 24^2}$	B1
	For taking moments about the centre of the ring or about the mid-point of the rod, or C.O.M. of frame (correct number of terms required in equation)	MMMAN PARACAMPI T19 B1 M1
	$(1.5 + 0.6)\overline{x} = 0.6 \times 7 \text{ or } (1.5 + 0.6)(7 - \overline{x}) = 1.5 \times 7$ $1.5\overline{x} = 0.6 (7 - \overline{x})$	A1
	Distance is 2cm SR Allow M1 for 48.7 = $(50 \pi + 48) \overline{x}$	A1
		4
2 (i)	OQ = 4 tan 20° (=1.456)	B1
	OG = 1.5	B1
	G not between O and Q (all calculations correct)	B1
		3
(ii)	Hemisphere does not fall on to its plane face	*B1 ft
	Because the moment about <i>P</i> is clockwise or the centre of mass is to right of <i>P</i> Q	(dep)* B1 ft
		2
3 (i)	Rope is at 30° to wall, or beam is at 0° to the horizontal or a correct trig. ratio used	B1
	For taking moments about <i>A</i> or For taking moments about <i>P</i> and resolving horizontally	M1
	2.5 T = 45 g x 3cos 30° or 5 H = 45 g x 3cos 30° and H = T sin30°	A1 ft
	Tension is 468 N	A1
		4
(ii)	Horizontal component is 234 N (ft $\frac{1}{2}$ T)	B1 ft
	For resolving forces vertically ($V = 45g - T\cos 30^\circ$)	M1
	Magnitude of vertical component is 45 N SR angle incorrect (i) B0, M1, A1 ft A0, (ii) B1 ft (<i>T</i> <u>and</u> angle), M	A1 ft

Page	2 Mark Scheme Syllabus	0
	A AND AS LEVEL – JUNE 2003 9709/8719	Day
(i)	For using Newton's second law with $a = v \frac{dv}{dx}$	DahaCambri M1
	$-\frac{1}{3v} = 0.2v \frac{dv}{dx}$	A1
	$3v^2 \frac{dv}{dx} = -5$ from correct working	A1 3
(ii)	For separating the variables and attempting to integrate	3 M1
	$v^3 = (A) - 5x$	A1
	For using $x = 0$ and $v = 4$ to find A, and then substituting $x = 7.4$ (or equivalent using limits)	M1
	<i>v</i> = 3	A1
		4
(i)	For resolving forces vertically (3 term equation)	M1
	$T\cos 60^{\circ} + 0.5 \times 10 = 8$	A1
	Tension is 6 N	A1
		3
(ii)	Radius of circle is 9sin60° (7.7942)	B1
	For using Newton's second law horizontally with $a = \frac{v^2}{r}$	M1
	$6\sin 60^{\circ} = 0.5 \frac{v^2}{(9\sin 60^{\circ})}$	A1 ft
	Alternative for the above 2 marks:	
	For using Newton's second law perpendicular to the string with a = $\frac{v^2}{r}$	M1
	$(8 - 0.5 \times 10)\sin 60^\circ = 0.5 \frac{v^2}{(9\sin 60^\circ)}\cos 60^\circ$	A1 ft
	Speed is 9 ms ⁻¹	A1
		4
	NB Use of $mr\omega^2$, the M1 is withheld until $v = r\omega$ is used SR Lift perpendicular to the string: (i) $8\sin60^\circ = 0.5g + T\cos60^\circ \rightarrow T = 3.86$: M1, A1, A1 (-1 MR) (2 out of 3)	max);
	(ii) $3.86\sin 60^\circ + 8\cos 60^\circ = \frac{0.5v^2}{2(1-50^\circ)^2}$: B1, M1, A1 $$, A1 (-1 MR) (3 out of	

(ii) $3.86\sin 60^{\circ} + 8\cos 60^{\circ} = \frac{0.5V}{9\sin 60^{\circ}}$: B1, M1, A1 $\sqrt{}$, A1 (-1 MR) (3 out of 4 max) $\Rightarrow \underline{10}.7$

Page 3		Syllabus 2
	A AND AS LEVEL – JUNE 2003	9709/8719
(i)	For using $y = \dot{y}_0 t - \frac{1}{2} g t^2$ with $y = 0$ and $t = 10$ or	Syllabus 9709/8719 M1
	$\dot{y} = \dot{y}_0 - gt$ with $\dot{y} = 0$ and $t = 5$	M1
	0 = $60\sin \alpha x 10 - \frac{1}{2} x 10 x 10^2$ or 0 = $60\sin \alpha - 10 x 5$	A1
	$\alpha = 56.4^{\circ}$	A1
		3
(ii)	For substituting $t = 5$ into $y = \dot{y}_0 t - \frac{1}{2} g t^2$ or $\dot{y} = 0$ into	
	$\dot{y}^2 = \dot{y}_0^2 - 2gy$ or $\dot{y} = 0$ and $t = 5$ into $y = \frac{\dot{y}_0 + \dot{y}}{2}t$	M1
	Greatest height is 125m	A1
		2
(iii)	$\dot{y} = 60\sin \alpha - gT$	B1
	$\dot{x} = 60\cos \alpha$	B1
	For attempting to solve $\dot{x} = \dot{y}$, or a complete method for an equation in <i>T</i> using $\dot{x} = \dot{y}$	M1
	<i>T</i> = 1.68	A1
		4

NB. Use of $\,\dot{y}_{\scriptscriptstyle 0}$ = 60 in (i) and (ii) is M0

Page 4	Mark Scheme	Syllabus S
	A AND AS LEVEL – JUNE 2003	9709/8719
(i) For usir	ng $T = \frac{\lambda x}{L}$ $(\frac{130 \times 3}{10} \text{ or } \frac{130 \times 1.5}{5})$	Syllabus 9709/8719 M1
Tensior	n is 39 N	A1
		2
(ii) For res	plving forces vertically (mg = 2 x 39 x $\frac{5}{13}$)	M1
Mass is	3kg	A1
		2
(iii) Extensi	on = 20 - 10 (or 10 - 5)	B1
(<i>L</i> must	ng EPE = $\frac{\lambda x^2}{2L}$ be 10 or 5; must be attempt at extension, e.g 2.5 is M0)	g. <i>x</i> = 20 or
[EPE =	$\frac{130 \times 10^2}{2 \times 10} \text{ or EPE} = 2 \text{ x } \frac{130 \times 5^2}{2 \times 5}]$	
(Allow N	11 only for <i>x</i> = 2 or 3)	M1
EPE is (650 J (ft attempted extension in lowest position)) A1 ft
		3
(iv) Change	in GPE = 3 x 10 x 8	B1 ft
	ng the principle of conservation of energy with E and EPE all represented	M1
650 = ½	$\frac{130 \times 2^2}{2 \times 10}$ x 10 x 8 + $\frac{130 \times 2^2}{2 \times 10}$	A1 ft
Speed i	s 16 ms ⁻¹	A1

GCE A AND AS LEVEL AICE

June 2003

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06

MATHEMATICS Paper 6 (Probability and Statistics 1)

		2
Page 1	Mark Scheme	Syllabus
	A AND AS LEVEL – JUNE 2003	9709/0390

						Syllabus 003 9709/0390 Or any sensible answer For correct stem, i.e. not 30, 40, 50 etc. For correct leaf, must be sorted	
	Page	e 1		Scheme		Syllabus	
			A AND AS LE	VEL – JUN	E 20	9709/0390	
						- an	
1	(i)	False zero		B1	1	Or any sensible answer	Sr:
	(ii)	(a) Stem	Leaf				ale
		3	45 145	B1 B1		For correct stem, i.e. not 30, 40, 50 etc. For correct leaf, must be sorted	"On
		4 5	02	ы		Tor correct lear, must be sorted	
		6	2				
		7 8	339 344556679				
		9	1				
			ep 34, or stem				
		width = 10		B1	3	For key, NB 30 4 rep 34 gets B1 here	
		(b) 79		B1 ft	1	For correct answer, only ft from a sorted stem and leaf diagram	
2	(i)	$P(N, \overline{N}) =$	$\frac{3}{10} \times \frac{7}{9}$	M1		For multiplying 2 relevant possibilities	
		Mult. By 2		A1	2	For obtaining given answer legitimately	
			ways ₁₀ C ₂ (= 45) 1 of each	M1		For both totals	
		7	₇ C ₁ x ₃ C ₁ (= 21)		•		
		Prob =	= 21/45 = 7/15 AG	A1	2	For obtaining correct answer	
	(ii)	P (<i>N</i> , <i>N</i>) –	3/10 x 2/9 (= 1/15)	M1		For 2 correct numbers multiplied together, can be implied	
				N/1		For 2 correct numbers multiplied	
		P(N, N):	= 7/10 x 6/9 (= 7/15)	M1		For 2 correct numbers multiplied together or subtracting from 1	
			(- 7713)				
		x	0 1 2	B1	3	All correct. Table correct and no	
		P (X=x)	<u>0 1 2</u> 7/15 7/15 7/15		-	working gets 3/3	
	(iii)	$E(X) = 1 x^{-1}$	7/15 + 2 x 1/15	B1 ft	1	For correct answer or equivalent.	
	(,		= 3/5		-	Only ft if $\sum p = 1$	
3	(i)	P(X > 120)	1				
		• •	$\Phi\left(\frac{120-112}{17.2}\right)$			En des des des 11 - 11 - 11	
		- 1 -	· 17.2	M1		For standardising with or without the $\sqrt{17.2^2}$, but no cc.	
		= 1 -	Φ (0.4651)	M1		For finding the correct area, 1 – their	
		= 1 -	0.6790 = 0.321	A1	3	Φ (z), NOT Φ (1 – their z(0.4651)) For correct answer	
L	L						1

Pa	8		ark Schem	Scheme Syllabus		
		A AND AS			103 3103/0330 PBC	
(ii	'	<i>z</i> = -0.842	B1		For z, ±0.842 or ±0.84	
		$-0.842 = \frac{103 - 115}{\sigma}$	M1		Syllabus0039709/0390For $z, \pm 0.842$ or ± 0.84 For solving an equation involving their z or $z = 0.7881$ or 0.5793 only, 103, 115 and σ or $\sqrt{\sigma}$ or σ^2 , i.e. must have used tables	
		<i>σ</i> = 14.3	A1	3	For correct answer	
i (i))	$(0.7)^{24} \times (0.3)^6 \times {}_{30}C_{24}$	M1		For relevant binomial calculation	
		= 0.0829	A1	2	For correct answer	
		OR normal approx. P(24) = Φ ((24.5 - 21)/ $\sqrt{6.3}$ - Φ ((23.5 - 21)/ $\sqrt{6.3}$)) = 0.9183 - 0.8404 = 0.0779	M1	2	For subtracting the 2 phi values as written For correct answer	
(ii	i)	μ = 30 x 0.7 = 21, σ^2 = 30 x 0.7 x 0.3 = 6.3	B1		For 21 and 6.3 seen	
		$P(<20) = \Phi\left(\frac{19.5 - 21}{\sqrt{6.3}}\right) = \Phi(-0.5976)$ $= 1 - 0.7251 = 0.275$	M1 M1 M1 A1	5	For standardising process, must have $$, can be + or – For continuity correction 19.5 or 20.5 For using 1 - some area found from tables For correct answer	
5 (i)	i)	$_{6}C_{3} \times _{4}C_{2} = 120$	M1		For multiplying 2 combinations together, not adding, no perms, ${}_{10}C_3 \ge {}_{10}C_2 $ or ${}_{5}C_3 \ge {}_{5}C_2 $ would get M1	
			A1	2	For answer 120	
(ii	i)	₆ C ₄ x ₄ C ₁ (= 60)	M1		For reasonable attempt on option 4M 1W, or 5M, 0W, can have + here and	
		₆ C ₅ x ₄ C ₀ (= 6)	M1		perms For other option attempt	
		Answer = 186	A1	3	For correct answer	
(iii		Man and woman both on ${}_{5}C_{2} \times {}_{3}C_{1} (= 30)$	M1		For finding number of ways of the man and woman being on together, need not be evaluated but must be multiplied	
		120 - 30 = 90	M1		For subtracting a relevant number from their (i)	
			A1	3	For correct answer	

				4777
	Page		CScheme VEL – JUNE 20	Syllabus 003 9709/0390
		A AND AS LE	VEL – JUNE ZU	103 [9709/0390] Page
		OR ${}_{5}C_{2} \times {}_{3}C_{2} (= 30)$ ${}_{3}C_{1} \times {}_{5}C_{3} (= 30)$ ${}_{5}C_{3} \times {}_{3}C_{2} (= 30)$ $\sum = 90$	M1 M1 A1 3	Syllabus 003 9709/0390 Any 2 of man in, woman out Woman in, man out Neither in Woman in man out
		OR ${}_{3}C_{1} \times {}_{5}C_{3} (= 30)$ ${}_{3}C_{2} \times {}_{6}C_{3} (= 60)$ $\sum = 90$	M1 M1 A1 3	Woman in, man out Woman out, any man For correct answer
		OR ${}_{5}C_{2} \times {}_{3}C_{2} (= 30)$ ${}_{5}C_{3} \times {}_{4}C_{2} (= 60)$ $\sum = 90$	M1 M1 A1 3	Man in, woman out Man out, any woman For correct answer
6	(i)	P(G) = number of g'parents/total people	M1	For appreciating total g'parents/total people, can be implied
		= 6/16 = 3/8	A1 2	For correct answer
	(ii)	P(H1, G) + P(H2, G) + P(H3, G) = $\frac{1}{3} \times \frac{2}{7} + \frac{1}{3} \times \frac{3}{7} + \frac{1}{3} \times \frac{1}{2} = \frac{17}{42}$	B1	For any correct 2-factor product, need not be evaluated
		(= 0.405)	M1 A1 3	For addition of 3 relevant 2-factor products For correct answer or equivalent
	(iii)	$P(H1 G) + P(H2 G)$ $= \frac{2/21}{4} + \frac{3/21}{4} = \frac{10}{4}$	M1	For summing exactly 2 probability options
		$=\frac{17}{42}+\frac{17}{42}=\frac{17}{17}$	M1	For dividing by answer to (ii) , only if not multiplied as well, and p must be < 1
			A1 A1 4	For one correct probability For correct answer or equivalent
		OR P(H3 G) = 7/17 Answer = 1 - 7/17 = 10/17	M1 M1 A2	For finding prob. options no parents For subt. from 1 For correct answer
7	(i)	Mean =	M1	For using their mid-intervals (not end points or class widths) $\sum c^2$
		(2.5 x 11 + 7.5 x 20 + 15 x 32 + 25 x 18 + 35 x 10 + 55 x 6)/97 = 18.4	M1 A1	For using $\frac{\sum fx^2}{\sum f}$ any x For correct answer, cwo, 18.4 no wkg 3/3

Page 4	-	C Scheme	Syllabus
	A AND AS LE	EVEL – JUNE 20	9709/0390 Pacan
15 ² 35 ²	$= (2.5^{2} \times 11 + 7.5^{2} \times 20 + 25^{2} \times 32 + 25^{2} \times 18 + 2^{2} \times 10 + 55^{2} \times 6)/97 - 25^{2} \times 6)/97 - 20^{2} \times 6)/97 $	M1	Syllabus0039709/0390For using $\frac{\sum fx^2}{\sum f}$ - (their mean)² or equivalent, no $$ needed, not $(\sum fx)^2/\sum f$
		A1 5	For correct answer
	eq. densities: 2.2, 4.0, 2, 1.8, 1.0, 0.2	M1	For attempting a frequency density of some sort (or scaled frequency), can be upside down but not multiplied
freq .		A1	For correct heights on the graph
dens		B1	For correct bars on uniform horiz. scale, i.e. from 0 to 5 etc.
	10 20 30 40 50 60 70 time in mins	B1 4	Freq. density or scaled freq. labelled on vertical axis, time or mins on horiz., 'class width' is not enough

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Mark Scheme	Syllabus	~
A AND AS LEVEL – JUNE 2003	9709	1 %

Page 1	Marl	Scheme		Syllabus N. A	
1 490 1		VEL – JUNE 2	2003	9709 973	
	4.05			APHA A	
1 (i) 2.5	1.25	B1 B1	2	For correct mean. For correct	
(ii) 5	5	B1ft B1ft	2	Syllabus 9709 For correct mean. For correct variance For correct mean. For correct variance For correct He and He	In
2 $H_0: p = 0.0$	6 H ₁ : <i>p</i> > 0.6	B1		For correct H_0 and H_1	
$P(X \ge 10) = \frac{1}{12}C_{11}0.6^{11}0.4^{11}$ $= 0.0834$	² C ₁₀ 0.6 ¹⁰ 0.4 ² + + 0.6 ¹²	M1* M1*dep A1		For one Bin term (n = 12, p = 0.6) For attempt $X = 10$, 11, 12 or equiv. For correct answer (or correct individual terms and dig showing 0.1)	1
Reject H ₀ , i.e level	. accept claim at 10%	B1ft	5	For correct conclusion	
	lormal scores 4/5 max	B1		For correct H_0 and H_1	
(or equiv. Usi = 1.3552	ng N(0.6, 0.24/12))	M1		Use of N(7.2, 2.88) or N(0.6, 0.24/12) and standardising with or without cc	
	- 0.9123 = 0.0877 . accept claim at 10%	A1		For correct answer or 1.3552 and	
level		B1ft		1.282 seen For correct conclusion	
3 (i) 31±2.	.326 x $\frac{3}{\sqrt{20}}$	B1		For correct mean	
= (29.	4, 32.6)	M1		Calculation of correct form	
				$\bar{x} \pm z \times \frac{s}{\sqrt{n}}$	
		B1 A1	4	(must have \sqrt{n} in denominator) z = 2.326 Correct answer	
· · /	s inside interval ot claim (at 2% level)	ftB1* ftB1*dep	2	S.R. Solutions not using (i) score B1ft only for correct working and conclusion	
	$.5) = \left[x - \frac{x^2}{4} \right]_{1.5}^2$ $x - \frac{x^2}{4} \right]_{.0}^{1.5}$	M1		For substituting 2 and 1.5 in their $\int f(x)dx$ (or area method ½ their base x their height)	
= 0.062	25	A1	2	For correct answer	

					444
	Paç		Scheme		Syllabus 7.0
			VEL – JUNE 20	103	9709
	(ii)	$E(X) = \int_{0}^{2} (x - \frac{1}{2}x^{2}) dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{6}\right]_{0}^{2}$	M1		Syllabus97099709For evaluating their $\int xf(x)dx$ For correct answer
		= 2/3	A1	2	For correct answer
	(iii)	$m - \frac{m^2}{4} = 0.5$	M1		For equating their $\int f(x) dx$ to 0.5
		$m = 0.586 (2 - \sqrt{2})$	M1 A1	3	For solving the related quadratic For correct answer
5	(i)	$P(X < 1.7) = \Phi\left(\frac{1.7 - 2.1}{0.9/\sqrt{20}}\right)$	B1 M1		For identifying prob Type I error For standardising
		= 1 - Φ (1.9876) = 0.0234	A1	4	For correct standardising and correct area For correct final answer
	(ii)	P(Type II error) = P(X > 1.7)	B1		For identifying prob for Type II error
		$= 1 - \Phi\left(\frac{1.7 - 1.5}{0.9/\sqrt{20}}\right)$	M1		For standardising using 1.5 and their 1.7
			A1		For correct standardising and correct area
		= 1 - Φ (0.9938) = 0.160	A1	4	For correct final answer
6	(i)	$\lambda = 1.25$	M1		For attempting to find new λ and using it
		$P(X < 4) = e^{-1.25} \left(1 + 1.25 + \frac{1.25^2}{2} + \frac{1.25^3}{6} \right)$	M1		For summing $P((0,) 1, 2, 3)$ or $P(0, 1, 2, 3, 4)$ using a Poisson expression
		= 0.962	A1	3	For correct answer
	(ii)	X ~N(182.5, 182.5) P(> 200 breakdowns) = 1 - $\Phi\left(\frac{200.5 - 182.5}{\sqrt{182.5}}\right)$	B1 M1		For correct mean and variance For standardising process with or without continuity correction
		$= 1 - \Phi(1.332)$	A1ft		For correct standardising and
		= 0.0915 (0.0914)	A1	4	correct tail For correct answer
	(iii)	λ = 5 for phone calls λ = 6.25 for total	B1		
		$P(X=4) = e^{-6.25} \left(\frac{6.25^4}{4!}\right)$	M1		For summing their two λ s and using a Poisson expression OR alt. method using sep. distributions 5 terms req.
		= 0.123	A1	3	terms req. For correct answer

Page 3 Mark		rk Scheme		Syllabus 🔗
	A AND AS L	EVEL – JU	NE 2003	9709
(i) 20 of A	A ~A* ∼N(401, 20 x 0.15 ²) ∼N(401, 0.45)	B1		Syllabus97099709For correct mean for eitherFor variance 20×0.15^2 or 20×0.27^2 For adding their two variances
20 of <i>E</i>	3 ~B* ~N(401, 1.458)	B1		For variance 20 x 0.15 ² or 20 x 0.27 ²
A* - B*	* ~N(0, 1.908)	M1		For adding their two variances
P(A* -	<i>B</i> * > 2)			
	$= 1 - \Phi\left(\frac{2 - 0}{\sqrt{1.908}}\right)$	M1		For consideration of their $A^* - B^* > 2$
	= 1 $- \Phi$ (1.4479)	M1		For standardising and finding correct area
	= 0.0738	A1	6	For correct answer
<u>OR</u> A~N(20.05, 0.15 ² /20),			
	20.05, 0.27 ² /20)	B1		For correct mean for either
<u> </u>		B1		For variance 0.15 ² /20 or 0.27 ² /20
A - B -	~N(0, 0.00477)	M1		For adding their variances
$P(\overline{A} - \overline{A})$	 B > 0.1)	M1		For consideration of their
	$= 1 - \Phi\left(\frac{0.1 - 0}{\sqrt{0.00477}}\right)$	M1		$\overline{A} - \overline{B} > 0.1$ For standardising and finding correct area
	= 0.0738	A1	6	For correct answer
(ii) 1.96 =	$\frac{20.07 - 20.05}{(0.15/\sqrt{n})}$	M1		For an equation of correct form or RHS involving \sqrt{n}
		B1		For 1.96 used
		M1		For solving an equation of correct form (any z)
<i>n</i> = 21	6	A1	4	For correct answer