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1 Expand (1 + 4x)−1
2 in ascending powers of x, up to and including the term in x3, simplifying the

coefficients. [4]

2

The diagram shows a sketch of the curve y = 1

1 + x3
for values of x from −0.6 to 0.6.

(i) Use the trapezium rule, with two intervals, to estimate the value of

� 0.6

−0.6

1

1 + x3
dx,

giving your answer correct to 2 decimal places. [3]

(ii) Explain, with reference to the diagram, why the trapezium rule may be expected to give a good
approximation to the true value of the integral in this case. [1]

3 (i) Solve the equation �2 − 2i� − 5 = 0, giving your answers in the form x + iy where x and y are real.
[3]

(ii) Find the modulus and argument of each root. [3]

(iii) Sketch an Argand diagram showing the points representing the roots. [1]

4 (i) Use the substitution x = tan θ to show that

� 1 − x2

(1 + x2)2
dx = � cos 2θ dθ . [4]

(ii) Hence find the value of

� 1

0

1 − x2

(1 + x2)2
dx. [3]
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5 The polynomial x4 + 5x + a is denoted by p(x). It is given that x2 − x + 3 is a factor of p(x).
(i) Find the value of a and factorise p(x) completely. [6]

(ii) Hence state the number of real roots of the equation p(x) = 0, justifying your answer. [2]

6 (i) Prove the identity

cos 4θ + 4 cos 2θ ≡ 8 cos4 θ − 3. [4]
(ii) Hence solve the equation

cos 4θ + 4 cos 2θ = 2,

for 0◦ ≤ θ ≤ 360◦. [4]

7 (i) By sketching a suitable pair of graphs, show that the equation

cosec x = 1
2
x + 1,

where x is in radians, has a root in the interval 0 < x < 1
2
π. [2]

(ii) Verify, by calculation, that this root lies between 0.5 and 1. [2]

(iii) Show that this root also satisfies the equation

x = sin−1( 2
x + 2

). [1]

(iv) Use the iterative formula

x
n+1

= sin−1( 2
xn + 2

),

with initial value x1 = 0.75, to determine this root correct to 2 decimal places. Give the result of
each iteration to 4 decimal places. [3]

8 (i) Using partial fractions, find

� 1
y(4 − y) dy. [4]

(ii) Given that y = 1 when x = 0, solve the differential equation

dy
dx

= y(4 − y),
obtaining an expression for y in terms of x. [4]

(iii) State what happens to the value of y if x becomes very large and positive. [1]
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9

The diagram shows part of the curve y = x

x2 + 1
and its maximum point M. The shaded region R is

bounded by the curve and by the lines y = 0 and x = p.

(i) Calculate the x-coordinate of M. [4]

(ii) Find the area of R in terms of p. [3]

(iii) Hence calculate the value of p for which the area of R is 1, giving your answer correct to
3 significant figures. [2]

10 With respect to the origin O, the points A and B have position vectors given by

−−→
OA = 2i + 2j + k and

−−→
OB = i + 4j + 3k.

The line l has vector equation r = 4i − 2j + 2k + s(i + 2j + k).
(i) Prove that the line l does not intersect the line through A and B. [5]

(ii) Find the equation of the plane containing l and the point A, giving your answer in the form
ax + by + c� = d. [6]
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