

www.papacambridge.com MARK SCHEME for the May/June 2007 guestion paper

9709 MATHEMATICS

9709/03

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Mark Scheme Notes

Marks are of the following three types:

- www.papacambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- www.papacambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only - often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme Syllabi	us er	
		GCE A/AS LEVEL – May/June 2007 9709	No.]
é . I	FITLER OF	btain correct unsimplified version of the x or x^2 term in the expansion of $(2 +$	and any	
		$(1+\frac{3}{2}x)^{-2}$	$(x)^{-2}$ BI AI + AI	20
	Sta	ate correct first term $\frac{1}{4}$	B1	
		btain the next two terms $-\frac{3}{4}x + \frac{27}{16}x^2$	A1 + A1	
		he M mark is not earned by versions with symbolic binomial coefficients suc	ch as $\begin{pmatrix} -2\\ 1 \end{pmatrix}$.]	
	[T	The M mark is earned if division of 1 by the expansion of $(2+3x)^2$, with a contrast of the expansion of t	prrect unsimplified	
	x	or x^2 term, reaches a partial quotient of $a + bx$.] accept exact decimal equivalents of fractions.]		
	ISI	R: Answer given as $\frac{1}{4}(1-3x+\frac{27}{4}x^2)$ can earn B1M1A1 (if $\frac{1}{4}$ seen but then o	mitted, give MIA1).]	
	[S]	R: Solutions involving $k(1+\frac{3}{2}x)^{-2}$, where $k=2, 4$ or $\frac{1}{2}$, can earn M1 and A1.	√ for correctly	
		implifying both the terms in x and x^2 .]		
	OR: Dif	fferentiate expression and evaluate $f(0)$ and $f'(0)$, where $f'(x) = k(2+3x)^{-3}$	M1	
	Sta	ate correct first term $\frac{1}{4}$	BI	
	Ob	btain the next two terms $-\frac{3}{4}x + \frac{27}{16}x^2$	A1 + A1	4
2	use a facto Obtain an (ii) Attempt to	e x = -2 and equate to zero, or divide by $x + 2$ and equate constant remainder for $Ax^2 + Bx + C$ and reach an equation in <i>a</i> hower $a = 4$ to find quadratic factor by division or inspection exhibit quadratic factor $x^2 - 2x + 2$	r to zero, or M1 A1 M1 A1	2
	[The MI is earned if division reaches a partial quotient $x^2 + kx$, or if inspection has an unknown			
	factor x^2	+bx+c and an equation in b and/or c, or if inspection without working state onts with the correct moduli.]		
3		rule ative in any correct form on of tangent at $x = \frac{1}{4}\pi$ correctly	MI A1 M1	
		wer to $y = x$, or $y - x = 0$ sread $y = x \sin x$ can only earn M1M1.]	Al	4
•	State or imply	y at any stage that $3^{-x} = \frac{1}{3^x}$, or that $3^{-x} = \frac{1}{u}$ where $u = 3^x$	BI	
	Solve a 3-tern	n equation into the 3-term quadratic in u (or 3^x): $u^2 - 2u - 1 = 0$ m quadratic, obtaining one or two roots	B1 M1	
	Obtain root $\frac{2}{-}$	$\frac{2+\sqrt{8}}{2}$. or a simpler equivalent, or decimal value in [2.40, 2.42]	A1	
		method for finding the value of x from a positive root	MI	

Page 5	Mark Scheme Syllabus	er er	
	GCE A/AS LEVEL – May/June 2007 9709	Day	
	ver $R = 2$ formula to find α $= \frac{1}{3}\pi$, or 60°	Daha Cambrid	Je.
[For the M work mu	A1 condone a sign error in the expansion of $\cos(\theta - \alpha)$, but the subsequent trigonomest be correct.]	tric	.6
[SR: The	answer $\alpha = \tan^{-1}(\sqrt{3})$ earns M1 only.]		
(ii) State that	the integrand is of the form $a \sec^2(\theta - \alpha)$	M1	
State corr	ect indefinite integral $\frac{1}{4} \tan(\theta - \frac{1}{3}\pi)$	AL	
Use limit	s correctly in an integral of the form $\alpha \tan(\theta - \alpha)$	MI	
	ven answer correctly following full and exact working is on R and α .]	At	4
Obtain gir [Allow th (ii) Consider Complete (iii) State or in Rearrange (iv) Use the it Obtain fin Show suff the interv	formulac $\frac{1}{2}r^2 \alpha$ and $\frac{1}{2}r^2 \sin \alpha$, or equivalent, form an equation /en equation correctly e use of OA and/or OB for r.] sign of x -2 sin x at $x = \frac{1}{2}\pi$ and $x = \frac{2}{3}\pi$, or equivalent the argument correctly with appropriate calculations nply the equation $x = \frac{1}{3}(x+4\sin x)$ e this as $x = 2 \sin x$, or work vice versa erative formula correctly at least once hal answer 1.90 ficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign chan- al (1.895, 1.905) answer 1.9 scores A0.]	M1 A1 A1 B1 B1 M1 A1 ge in A1	2 2 2 3
(i) State or in Substitute Obtain the	The ply $du = \frac{1}{2\sqrt{x}} dx$, or $2u du = dx$, or $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$, or equivalent for x and dx throughout the integral e given form of indefinite integral correctly with no errors seen	B1 MI A1	3
	g to express the integrand as $\frac{A}{u} + \frac{B}{4-u}$, use a correct method to find either A or B = $\frac{1}{2}$ and $B = \frac{1}{2}$	M1*	
Southin 14	2	AI	

Integrate and obtain $\frac{1}{2} \ln u - \frac{1}{2} \ln(4-u)$, or equivalent Use limits u = 1 and u = 2 correctly, or equivalent, in an integral of the form $c \ln u + d \ln(4-u)$ Obtain given answer correctly following full and exact working M1(dep*) A1

6

_	Page 6	Mark Scheme Syllabus	er	
		GCE A/AS LEVEL – May/June 2007 9709		
8	Page 6Mark SchemeSyllabusGCE A/AS LEVEL – May/June 20079709(i) EITHER: Carry out multiplication of numerator and denominator by –1 –i, or solve for x or y Obtain $u = -1$ –i, or any equivalent of the form $(a + ib)/c$ State modulus of u is $\sqrt{2}$ or 1.41 State argument of u is $-\frac{3}{4}\pi$ (-2.36) or –135°, or $\frac{5}{4}\pi$ (3.93) or 225° OR: Divide the modulus of the numerator by that of the denominator			
		State modulus of u is $\sqrt{2}$ or 1.41	AS	20
		State argument of $u = \frac{3}{4}\pi$ (-2.36) or -135°, or $\frac{5}{4}\pi$ (3.93) or 225°	AL	
	OR:	Divide the modulus of the numerator by that of the denominator	MI	
		State modulus of u is $\sqrt{2}$ or 1.41 Subtract the argument of the denominator from that of the numerator, or equivalent State argument of u is $-\frac{3}{4}\pi$ (-2.36) or -135°, or $\frac{5}{4}\pi$ (3.93) or 225°	A1 MI	
	(Company)		A1	
		It method for finding the modulus or the argument of u^2	MI	1
		odulus of u is 2 and argument of u^2 is $\frac{1}{2}\pi$ (1.57) or 90°	A1	1
	Show a ci	nd u^2 in relatively correct positions ircle with centre at the origin and radius 2	B1√ B1	
		line which is the perpendicular bisector of the line joining u and u^2	B1√	
		e correct region, having obtained u and u^2 correctly Obtain a vector parallel to the plane, e.g. $\overline{AB} = -\mathbf{i} + 2\mathbf{j}$	B1	
		Use scalar product of perpendicular vectors to obtain an equation in $a, b, c, e.ga + 2b = 0$ or $-a + b + 2c = 0$, or $-b + 2c = 0$ Obtain two correct equations in a, b, c Solve to obtain ratio $a : b : c$, or equivalent Obtain $a : b : c = 4 : 2: 1$, or equivalent Obtain equation $4x + 2y + z = 8$, or equivalent	0, M1 A1 M1 A1 A1	
	<i>OR</i> 1:	Substitute for A and B and obtain $2a = d$ and $a + 2b = d$ Substitute for C to obtain a third equation and eliminate one unknown $(a, b, or d)$ entirely Obtain two correct equations in three unknowns, e.g. a, b, c Solve to obtain their ratio, e.g. $a : b : c$, or equivalent Obtain $a : b : c = 4 : 2 : 1$, or $a : c : d = 4 : 1 : 8$, or $b : c : d = 2 : 1 : 8$, or equivalent	B1 M1 A1 M1 A1	
	OR2:	Obtain equation $4x + 2y + z = 8$, or equivalent Substitute for A and B and obtain $2a = d$ and $a + 2b = d$ Solve to obtain ratio $a : b : d$, or equivalent Obtain $a : b : d = 2 : 1 : 4$, or equivalent Substitute for C to find c Obtain equation $4x + 2y + z = 8$, or equivalent	A1 B1 M2 A1 M1 A1	
	OR3:	Obtain a vector parallel to the plane, e.g. $\overrightarrow{BC} = -\mathbf{j} + 2\mathbf{k}$ Obtain a second such vector and calculate their vector product, e.g. $(-\mathbf{i}+2\mathbf{j})\times(-\mathbf{j}+2\mathbf{k})$ Obtain two correct components of the product Obtain correct answer, e.g. $4\mathbf{i}+2\mathbf{j}+\mathbf{k}$ Substitute in $4x + 2y + z = d$ to find d Obtain equation $4x + 2y + z = 8$, or equivalent	B1 MI A1 A1 M1 A1	
	OR4:	Obtain a vector parallel to the plane, e.g. $\overrightarrow{AC} = -\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ Obtain a second such vector and form correctly a 2-parameter equation for the plane Obtain a correct equation, e.g. $\mathbf{r} = 2\mathbf{i} + \lambda(-\mathbf{i} + 2\mathbf{j}) + \mu(-\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ State three equations in x, y, z, λ , μ Eliminate λ and μ	B1 M1 A1 A1 M1	
	dis lines and	Obtain equation $4x + 2y + z = 8$, or equivalent	Al	
	Carry out	mply a normal vector for plane OAB is k , or equivalent t correct process for evaluating a scalar product of two relevant vectors, e.g. $(4\mathbf{i} + 2\mathbf{j} + \mathbf{k}).(\mathbf{k})$ e correct process for calculating the moduli, divide the scalar product by the product of the	B1 M1	
		nd evaluate the inverse cosine of the result	MI	
		nd evaluate the inverse cosine of the result inswer 77.4° or 1.35 radians	1911	

Page 7	Mark Scheme	Syllabus er
	GCE A/AS LEVEL – May/June 2007	9709 20
Obtain terms	= 0. I iables correctly and attempt integration of at least one side $s - \frac{3}{2}(9-h)^{\frac{2}{3}}$ and 0.1 <i>t</i> , or equivalent	A1 + A1
Evaluate a co and bi, wher	onstant, or use limits $t = 0$, $h = 1$ with a solution containing $re p > 0$	terms of the form $a(9-h)^p$ M1*
	ion in any form, e.g. $-\frac{3}{2}(9-h)^{\frac{2}{3}} = 0.1t - 6$	Al
Rearrange ar	nd make h the subject	M1(dep*)
Obtain answ	ver $h = 9 - (4 - \frac{1}{15}t)^{\frac{3}{2}}$, or equivalent	Al
(iii) State that the	e maximum height is $h = 9$	BI
	e time taken is 60 years	B1
(iv) Substitute h	= 9/2 and obtain t = 19.1 (accept 19, 19.0 and 19.2)	B1