www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9709 MATHEMATICS

9709/07

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	er
	GCE A/AS LEVEL – May/June 2008	9709	100-

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus
-	GCE A/AS LEVEL – May/June 2008	9709

Page 3 Mark Scheme		Syllabus	er			
	GCE A/AS LEVEL – May/June 2008	9709				
			Ph.			
The follow	ving abbreviations may be used in a mark scheme o	r used on the scripts:	"Brice			
AEF	age 3 GCE A/AS LEVEL – May/June 2008 ge following abbreviations may be used in a mark scheme or used on the scripts: Any Equivalent Form (of answer is equally acceptable) Answer Given on the question paper (so extra checking is needed to ensure that					
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)					
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)					
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)					
CWO	Correct Working Only - often written by a 'fortuitous' answer					
ISW	Ignore Subsequent Working					
MR	Misread					
PA	Premature Approximation (resulting in basically coaccurate)	orrect work that is insufficien	tly			
sos	See Other Solution (the candidate makes a better a	attempt at the same question)				
SR	Special Ruling (detailing the mark to be given for case where some standard marking practice is					

Penalties

particular circumstance)

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

		m
Page 4	Mark Scheme	Syllabus
	GCE A/AS LEVEL – May/June 2008	9709

				M.
(i)	commuters are not representative of the whole population	B1	[1]	Any sensible answer
(ii)	people who travel to work on (this) train	B1	[1]	Any sensible answer
(iii)	mean = 6.17 o.e.	B1		
	variance = $\frac{1}{11} \left(463.56 - \frac{74^2}{12} \right)$	M1		Substituting in formula from tables
	= 0.657	A1	[3]	Correct answer
		D.1		D 1
(i)	$X \sim N(48.8, 15.6^2 / 5)$		[2]	For normal
		Βl	[4]	Correct mean and variance/s.d.
(ii)	$P((\overline{X} < 50)) = \Phi\left(\frac{50 - 48.8}{(15.6/\sqrt{5})}\right)$ o.e.	M1		Standardising with sq root
	$=\Phi(0.1720)$	M1		Correct area > 0.5
	= 0.568	A1	[3]	Correct answer
(i)	$2R \sim N(13.0, 2 \times 0.23^2)$	B1		Correct mean and variance
	$P(2R > 12.5) = 1 - \Phi\left(\frac{12.5 - 13}{\sqrt{0.1058}}\right)$	M1		Standardising and area > 0.5
	$= \Phi (1.537) = 0.938$	A1	[3]	Correct answer
(ii)	$3R - B \sim N(8.2, 3 \times 0.23^2 + 0.46^2)$	B1		Correct mean and variance
		M1		Considering $P((3R - B) > 6.7 \text{ o.e.}$
	$=\Phi (2.465)$	M1		Correct probability area > 0.5
	= 0.993	A1	[4]	Correct answer
(i)	H ₀ : n = 3			
(1)	H_1 : $\mu > 3$	B1		Both hypotheses correct
t stati	stic $z = \frac{3.3 - 3}{2.8 / \sqrt{179}}$	M1		Standardising attempt with sq rt in denom Correct z value accept rounding to 1.44 from
	= 1.43	A1		$\sqrt{180}$ (OR alt method finding crit value 3.344 M1 A1)
cal v	alue $z = 1.645$	M1		Comparing with $z = 1.645$ (or z consistent with
enou	gh evidence to support the claim	A1fi	t [5]	their H ₁) or eqiv comparison of areas Correct answer, ft their z. No contradictions. (OR compare C.V 3.344 with 3.3 M1 A1ft)
	(ii) (iii) (ii) (ii) (ii)	the whole population (ii) people who travel to work on (this) train (iii) mean = 6.17 o.e. variance = $\frac{1}{11} \left(463.56 - \frac{74^2}{12} \right)$ = 0.657 (i) $\overline{X} \sim N(48.8, 15.6^2/5)$ (ii) $P((\overline{X} < 50) = \Phi\left(\frac{50 - 48.8}{(15.6/\sqrt{5})}\right)$ o.e. = $\Phi(0.1720)$ = 0.568 (i) $2R \sim N(13.0, 2 \times 0.23^2)$ $P(2R > 12.5) = 1 - \Phi\left(\frac{12.5 - 13}{\sqrt{0.1058}}\right)$ = $\Phi(1.537)$ = 0.938 (ii) $3R - B \sim N(8.2, 3 \times 0.23^2 + 0.46^2)$ $P((3R - B) > 6.7) = 1 - \Phi\left(\frac{6.7 - 8.2}{\sqrt{0.3703}}\right)$ = $\Phi(2.465)$ = 0.993 (i) $H_0: \mu = 3$ $H_1: \mu > 3$ t statistic $z = \frac{3.3 - 3}{2.8/\sqrt{179}}$	the whole population (ii) people who travel to work on (this) train B1 (iii) mean = 6.17 o.e. Variance = $\frac{1}{11} \left(463.56 - \frac{74^2}{12} \right)$ $= 0.657$ A1 (i) $\overline{X} \sim N(48.8, 15.6^2/5)$ B1 B1 (ii) $P((\overline{X} < 50) = \Phi\left(\frac{50 - 48.8}{(15.6/\sqrt{5})}\right)$ o.e. $= \Phi(0.1720)$ $= 0.568$ M1 $= 0.668$ B1 P($2R \sim N(13.0, 2 \times 0.23^2)$ B1 P($2R > 12.5$) = $1 - \Phi\left(\frac{12.5 - 13}{\sqrt{0.1058}}\right)$ $= \Phi(1.537)$ $= 0.938$ A1 (ii) $3R - B \sim N(8.2, 3 \times 0.23^2 + 0.46^2)$ $P((3R - B) > 6.7) = 1 - \Phi\left(\frac{6.7 - 8.2}{\sqrt{0.3703}}\right)$ $= \Phi(2.465)$ $= 0.993$ A1 (i) $H_0: \mu = 3$ $H_1: \mu > 3$ B1 A1 statistic $z = \frac{3.3 - 3}{2.8/\sqrt{179}}$ $= 1.43$ Cal value $z = 1.645$ M1	the whole population (ii) people who travel to work on (this) train (iii) mean = 6.17 o.e. $variance = \frac{1}{11} \left(463.56 - \frac{74^2}{12} \right)$ $= 0.657$ A1 [3] (i) $\overline{X} \sim N(48.8, 15.6^2/5)$ (ii) $P(\overline{X} < 50) = \Phi\left(\frac{50 - 48.8}{(15.6/\sqrt{5})}\right)$ o.e. $= \Phi(0.1720)$ $= 0.568$ A1 [3] (i) $2R \sim N(13.0, 2 \times 0.23^2)$ $P(2R > 12.5) = 1 - \Phi\left(\frac{12.5 - 13}{\sqrt{0.1058}}\right)$ $= \Phi(1.537)$ $= 0.938$ A1 [3] (ii) $3R - B \sim N(8.2, 3 \times 0.23^2 + 0.46^2)$ $P((3R - B) > 6.7) = 1 - \Phi\left(\frac{6.7 - 8.2}{\sqrt{0.3703}}\right)$ $= \Phi(2.465)$ $= 0.993$ A1 [4] (i) $H_0: \mu = 3$ $H_1: \mu > 3$ A1 at statistic $z = \frac{3.3 - 3}{2.8/\sqrt{179}}$ $= 1.43$ Cal value $z = 1.645$

		my.
Page 5	Mark Scheme	Syllabus er
	GCE A/AS LEVEL – May/June 2008	9709

	(ii)	Say no extra weight loss when there is.	B2	[2]	Correct statement in context SR ₁ B1 for partially correct statem context SR ₂ B1 for any true statement about a Type rerror including accept Ho when it is false
5	(i)	1 in 15 months is equivalent to 4 in 60 months	B1	[1]	Or equivalent
		$P(0) = e^{-4} = 0.01831$ $P(1) = e^{-4} \times 4 = 0.07326$ $P(2) = e^{-4} \times 4^{2}/2 = 0.147 \text{ too big}$ $P(0) + P(1) = 0.0916$ Rejection region at 10% level is 0 or 1.	M1* M1* M1 A1*	*	Attempt to find P(0) and / or P(1) Comparing sum with 0.10 Considering and rejecting P(2) Correct answer. No errors seen.
	(iii)	P(type I error) = 0.0916	B1	[1]	Correct answer
	(iv)	1 is in rejection region	B1		identifying where 1 is
		there is evidence that the new guitar string lasts longer	B1ft	[2]	correct conclusion ft their rejection region
6	(i) .	$\lambda = 0.8$	M1		Attempt at Poisson calculation with attempt at
		$P(2) = e^{-0.8} \frac{0.8^2}{2} = 0.144$	A1	[2]	λ Correct answer
	(ii)	$\lambda = 0.2$ $P(0) = e^{-0.2} = 0.819$	M1 A1	[2]	Attempt at $P(0)$ with attempt at λ Correct answer
		$1 - e^{-0.8t} = 0.9$ $\ln 0.1 = -0.8t$ $t = 2.88$	M1 A1 M1 A1	[4]	Equation containing at least 0.9 and e ^{-k} Correct equation with 0.8t attempt to solve equation by ln correct answer
7	(i)	$\int_{0}^{4} \frac{k}{t+1} dt = 1$	M1		Equating to 1 and attempt to integrate
		$[k \ln(t+1)]_0^4 = 1$ k = 1/ln 5 AG	A1 M1 A1	[4]	ln(t+1) seen (or $ln(x+1)Correct use of limits 0 and 4Correct given answer legit obtained$
	(ii)	$P(T > 3) = \int_{3}^{4} \frac{k}{t+1} dt$	M1		Attempt to integrate with one limit 3
		$= \left[k\ln(t+1)\right]_3^4$	A1	[2]	Correct integration with correct limits seen (o.e.)
		$= 1 - \ln 4 / \ln 5 = 0.139$	A1	[3]	Correct answer

		May
Page 6	Mark Scheme	Syllabus
	GCE A/AS LEVEL – May/June 2008	9709
		S.

$ \mathbf{(iii)} \int_{\infty}^{m} \frac{k}{t+1} dt = 0.5 $	M1	Equating to 0.5 and attempt to integrate
$[k \ln(t+1)]_0^m = 0.5$	M1	Attempt to solve equation with at least k , ln and m on LHS and 0.5 on RHS
$k \ln(m+1) = 0.5$ $m = 1.24 \text{ min}$	A1 [3]	correct answer