UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/31

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	er
	GCE AS/A LEVEL – May/June 2011	9709	

Mark Scheme Notes

Marks are of the following three types:

- Cambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. А Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	
	GCE AS/A LEVEL – May/June 2011	9709	

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- www.papaCambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{2}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version Syllabus	·A.	r
	GCE AS/A LEVEL – May/June 2011 9709	TOS C	
		n Bahacal. Mi Al Al	3
Either:	Obtain $1 + \frac{1}{3}kx$, where $k = \pm 6$ or ± 1	M	Oni
<u>Littlei</u> .	$\frac{3}{3}$		3
	Obtain $1-2x$ Obtain $-4x^2$	Al Al	
	Obtain $-\frac{40}{3}x^3$ or equivalent	A1	
	5		
<u>Or</u> :	Differentiate expression to obtain form $k(1-6x)^{-\frac{2}{3}}$ and evaluate $f(0)$ and $f'(0)$	M1	
	Obtain $f'(x) = -2(1-6x)^{-\frac{2}{3}}$ and hence the correct first two terms $1-2x$	A1	
	Obtain $f''(x) = -8(1-6x)^{-\frac{5}{3}}$ and hence $-4x^2$	A1	
	Obtain $f'''(x) = -80(1-6x)^{-\frac{8}{3}}$ and hence $-\frac{40}{3}x^3$ or equivalent	A1	[4]
	k cos 2 r		
(i) Obta	ain $\frac{k\cos 2x}{1+\sin 2x}$ for any non-zero constant k	M1	
Obte	$ \frac{2\cos 2x}{1+\sin 2x} $	A1	[2]
000	$1+\sin 2x$	211	[4]
	correct quotient or product rule	M1	
Obta	ain $\frac{x \sec^2 x - \tan x}{r^2}$ or equivalent	A1	[2]
	<i>x</i> ⁻		
		D1	
(i) Obta	ain $\pm \begin{vmatrix} -4 \\ -4 \end{vmatrix}$ as normal to plane	B1	
Form	$\begin{pmatrix} 6 \end{pmatrix}$ n equation of p as $3x - 4y + 6z = k$ or $-3x + 4y - 6z = k$ and use relevant point to find	1 <i>k</i> M1	
	ain $3x - 4y + 6z = 80$ or $-3x + 4y - 6z = -80$	A1	[3]
	e the direction vector $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ or equivalent		
(ii) State	e the direction vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ or equivalent	B1	
() 2000		21	
Carr	y out correct process for finding scalar product of two relevant vectors	M1	
Use	correct complete process with moduli and scalar product and evaluate sin ⁻¹ or cos		
	of result ain 30.8° or 0.538 radians	M1 A1	[4]
		111	L'J

Pa	ge 5	Mark Scheme: Teachers' versior	Syllabus	·~~~	r
		GCE AS/A LEVEL – May/June 201	1 9709	Dan	
(i)	Verify that	-96 + 100 + 8 - 12 = 0		13	34
		find quadratic factor by division by $(x + 2)$, rea kx , inspection or use of an identity	ching a partial quotient	A BabaCall MI A1 A1 in	Orio
	Obtain $12x^{+}$			A1	
	State $(x + 2)$	(4x+3)(3x-2)		A1	[4]
		n be earned if inspection has unknown factor A or B or equation $12x^2 + Bx + C$ and an equation	$x^2 + Bx - 6$ and an equation in <i>B</i> and/or <i>C</i> .]	in	
(ii)	State $3^{y} = \frac{2}{3}$	and no other value		B1	
		method for finding <i>y</i> from equation of form 3^y	= k, where $k > 0$	M1	
	Obtain –0.3	69 and no other value		A1	[3]
(i)		one of $e^{2x} = 9$, $e^{y} = 2$ and $e^{2y} = 4$		B1	
	Obtain give	$en result 58 + 2k = c \qquad AG$		B1	[2]
(ii)	Differentiat	e left-hand side term by term, reaching $ae^{2x} + backet = backet + backe$	$e^{y} \frac{\mathrm{d}y}{\mathrm{d}x} + c e^{2y} \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	
	Obtain 12e ²	$dx + ke^{y}\frac{dy}{dx} + 2e^{2y}\frac{dy}{dx}$		A1	
	Substitute (I RHS =	ln 3, ln 2) in an attempt involving implicit diffe	rentiation at least once, whe	re M1	
		-12k - 48 = 0 or equivalent		Al	
	Obtain $k = \frac{4}{3}$			A1	[5
(i)	State or imp	bly area of segment is $\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$ or 50θ	$-50\sin\theta$	B1	
	Attempt to a	form equation from area of segment = $\frac{1}{5}$ of are	a of circle, or equivalent	M1	
	Confirm giv	ven result $\theta = \frac{2}{5}\pi + \sin\theta$		A1	[3]
(ii)	Use iterativ	e formula correctly at least once		M1	
		e for θ of 2.11		A1	
		tient iterations to justify value of θ or show sig	n change in interval	A1	
	· · ·	, 2.115) trigonometry to find an expression for the leng	th of <i>AB</i>	M1	
		$.055 \text{ or } \sqrt{200 - 200 \cos 2.11}$, _ · - ·		
	Hence 17.4			A1	[5]

Pa	ige 6	Mark Scheme: Teachers' version Syllabus		•
	900	GCE AS/A LEVEL – May/June 2011 9709	°D2	
(i)	State or	imply $dx = 2t dt$ or equivalent	"Ca	
(i)		the integral in terms of x and dx		26,
				19
	Obtain g	given answer $\int_{1}^{\infty} (2x-2) \ln x dx$, including change of limits AG	Al	
		Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – May/June 20119709imply $dx = 2t dt$ or equivalent the integral in terms of x and dx given answer $\int_{1}^{5} (2x-2) \ln x dx$, including change of limits AG		
(ii)	Attempt	integration by parts obtaining $(ax^2 + bx)\ln x \pm \int (ax^2 + bx) \frac{1}{x} dx$ or equivalent	M1	
	Obtain ($(x^2 - 2x)\ln x - \int (x^2 - 2x) \frac{1}{x} dx$ or equivalent	A1	
		$x^2 - 2x)\ln x - \frac{1}{2}x^2 + 2x$	A1	
		its correctly having integrated twice	M1	
	Obtain $15 \ln 5 - 4$ or exact equivalent		A1	[5]
	[Equiva	lent for M1 is $(2x - 2)(ax \ln x + bx) - \int (ax \ln x + bx) 2dx$]		
(i)	Either:	Multiply numerator and denominator by $(1 - 2i)$, or equivalent	M1	
(-)	<u></u> ,	Obtain –3i	A1	
		State modulus is 3	A1	
		Refer to <i>u</i> being on negative imaginary axis or equivalent and confirm argument $\sigma = \frac{1}{2} \sigma$		
		as $-\frac{1}{2}\pi$	A1	
	<u>Or</u> :	Using correct processes, divide moduli of numerator and denominator	M1	
		Obtain 3	A1	
		Subtract argument of denominator from argument of numerator	M1	Г <i>А</i> 1
		Obtain $-\tan^{-1}\frac{1}{2} - \tan^{-1}2$ or $-0.464 - 1.107$ and hence $-\frac{1}{2}\pi$ or -1.57	A1	[4]
(ii)	Show co	prrect half-line from u at angle $\frac{1}{4}\pi$ to real direction	B1	
	Use correct trigonometry to find required value		M1	
		$\frac{3}{2}\sqrt{2}$ or equivalent	A1	[3]
(iii)	Show, o	r imply, locus is a circle with centre $(1 + i)u$ and radius 1	M1	
(iii)	Show, o Use corr	r imply, locus is a circle with centre $(1 + i)u$ and radius 1 rect method to find distance from origin to furthest point of circle $3\sqrt{2} + 1$ or equivalent	M1 M1	

Pa	ge 7	Mark Scheme: Teachers' version Syllabus	6	r
		GCE AS/A LEVEL – May/June 2011 9709	000	
(i)	Express	$\cos 4\theta$ as $2\cos^2 2\theta - 1$ or $\cos^2 2\theta - \sin^2 2\theta$ or $1 - 2\sin^2 2\theta$	-al	
(4)		$\cos 4\theta$ in terms of $\cos \theta$	M	On:
	Obtain 8	$\cos^4\theta - 8\cos^2\theta + 1$	A1	.8
	Use cos2	Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL - May/June 20119709 $\cos 4\theta$ as $2 \cos^2 2\theta - 1$ or $\cos^2 2\theta - \sin^2 2\theta$ or $1 - 2 \sin^2 2\theta$ $\cos 4\theta$ in terms of $\cos \theta$ $\cos^4 \theta - 8 \cos^2 \theta + 1$ $\theta = 2 \cos^2 \theta - 1$ to obtain given answer $8 \cos^4 \theta - 3$ AG	A1	
(ii)	(a) Stat	e or imply $\cos^4 \theta = \frac{1}{2}$	B1	
()		ain 0.572	B1	
		ain -0.572	B1	[3]
		grate and obtain form $k_1\theta + k_2\sin 4\theta + k_3\sin 2\theta$	M1	
	Obt	$\sin \frac{3}{8}\theta + \frac{1}{32}\sin 4\theta + \frac{1}{4}\sin 2\theta$	A1	
	Obt	ain $\frac{3}{32}\pi + \frac{1}{4}$ following completely correct work	A1	[3]
(i)	Separate	variables correctly and integrate of at least one side	M1	
	Carry ou	an attempt to find A and B such that $\frac{1}{N(1800 - N)} \equiv \frac{A}{N} + \frac{B}{1800 - N}$, or equivalent	M1	
	Obtain -	$\frac{2}{N} + \frac{2}{1800 - N}$ or equivalent	A1	
		s to produce two terms involving natural logarithms	M1	
	Obtain 2	$\ln N - 2 \ln (1800 - N) = t$ or equivalent	A1	
	Evaluate	a constant, or use $N = 300$ and $t = 0$ in a solution involving $a \ln N$, $b \ln(1800)$	M1	
		$\ln N - 2 \ln (1800 - N) = t - 2 \ln 5$ or equivalent	A1	
		of logarithms to remove logarithms	M1	
	Obtain 1	$V = \frac{1800e^{\frac{1}{2}t}}{5 + e^{\frac{1}{2}t}} \text{ or equivalent}$	A1	[9]

(ii) State or imply that *N* approaches 1800

B1 [1]