CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level

www.papacambridge.com MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/23

Paper 2, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE. GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		2.
Page 2	Mark Scheme	Syllabu er
	GCE AS LEVEL – October/November 2012	9709 23

Mark Scheme Notes

Marks are of the following three types:

- Cambridge:com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. А Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabu.	e
	GCE AS LEVEL – October/November 2012	9709	5

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- Cambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only – often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through 🖑 marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme Syl	labu. A	r
			709 202	
			50	2
F	EITHER	State or imply non-modular inequality $(x-2)^2 \ge (x+5)^2$, or	Labu. 709 Milaba Mil Al	Bri
		corresponding equation or pair of linear equations	M1	3
		Obtain critical value $-\frac{3}{2}$	A1	
		Δ		
		State correct answer $x \le -\frac{3}{2}$	A1	
(OR	State a correct linear equation for the critical value, e.g. $x - 2 = -x - x$	- 5,	
		or corresponding correct linear inequality, e.g. $x-2 \ge -x-5$	M1	
		Obtain critical value $-\frac{3}{2}$	A1	
			A 1	501
		State correct answer $x \le -\frac{3}{2}$	A1	[3]
C S	Obtain <i>x</i> log Solve for <i>x</i>	the logarithm of a product, a quotient or a power $5 = (2x - 1) \log 3$ or equivalent ver $x = 1.87$	M1* A1 M1(dep*) A1	[4]
	Obtain x log Solve for x Obtain answ	$5 = (2x - 1) \log 3$ or equivalent ver $x = 1.87$	A1 M1(dep*) A1	[4]
	Dbtain x log Solve for x Dbtain answ Make relevat	$5 = (2x - 1) \log 3$ or equivalent	A1 M1(dep*)	[4]
	Dbtain x log Solve for x Dbtain answ Make relevan Dbtain a corr Solve a quad	the formula for the cos 2θ formula for the cos 2θ formula for the cos 2θ formula for the cos θ for the cos θ formula for the cos θ for θ	A1 M1(dep*) A1 M1 A1 M1	
	Obtain x log Solve for x Obtain answ Make relevan Obtain a corn Solve a quad Obtain answ	$5 = (2x - 1) \log 3$ or equivalent ver $x = 1.87$ Int use of the cos 2θ formula rect quadratic in cos θ tratic in cos θ ver $\theta = 60$ and no others in the range	A1 M1(dep*) A1 M1 A1	[4] [4]
	Obtain x log Solve for x Obtain answ Make relevan Obtain a corn Solve a quad Obtain answ	the formula for the cos 2θ formula for the cos 2θ formula for the cos 2θ formula for the cos θ for the cos θ formula for the cos θ for θ	A1 M1(dep*) A1 M1 A1 M1	
0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0	Obtain x log Solve for x Obtain answ Make relevan Obtain a corr Solve a quad Obtain answ Ignore answ	The formula $5 = (2x - 1) \log 3$ or equivalent formula $x = 1.87$ In the use of the $\cos 2\theta$ formula formula θ formula θ formula θ formula θ for θ formula θ formula θ form	A1 M1(dep*) A1 M1 A1 M1	
0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0	Dbtain $x \log$ Solve for x Dbtain answerMake relevandDbtain a correstSolve a quaddDbtain answerIgnore answeri) State $\frac{dt}{dt}$	$f_{2} = (2x - 1) \log 3 \text{ or equivalent}$ There $x = 1.87$ Intrust of the $\cos 2\theta$ formula rect quadratic in $\cos \theta$ there $\theta = 60$ and no others in the range vers outside the given range) $\frac{x}{t} = \frac{-2}{1-2t} \text{ or } \frac{dy}{dt} = -2t^{-2}$	A1 M1(dep*) A1 M1 A1 M1 A1 B1	
0 5 0 0 1 0 5 0 0 0 0 0 0 0	Dbtain $x \log$ Solve for x Dbtain answerMake relevandDbtain a correstSolve a quaddDbtain answerIgnore answeri) State $\frac{dt}{dt}$	The formula $5 = (2x - 1) \log 3$ or equivalent formula $x = 1.87$ In the use of the $\cos 2\theta$ formula formula θ formula θ formula θ formula θ for θ formula θ formula θ form	A1 M1(dep*) A1 M1 A1 M1 A1	
0 5 0 0 0 5 0 0 0 0 0 0 0	Dbtain x logSolve for xDbtain answerMake relevanDbtain a correstSolve a quadDbtain answerIgnore answerIgnore answerUse $\frac{dy}{dx}$	$f_{2} = (2x - 1) \log 3 \text{ or equivalent}$ There $x = 1.87$ Intrust of the $\cos 2\theta$ formula rect quadratic in $\cos \theta$ there $\theta = 60$ and no others in the range vers outside the given range) $\frac{x}{t} = \frac{-2}{1-2t} \text{ or } \frac{dy}{dt} = -2t^{-2}$	A1 M1(dep*) A1 M1 A1 M1 A1 B1	
	Dbtain x log Solve for xDbtain answerDbtain answerMake relevand Dbtain a correct Solve a quadd Dbtain answerIgnore answerIgnore answerUse $\frac{dy}{dx}$ Obtain a Dbtain a	$f_{t} = (2x - 1) \log 3 \text{ or equivalent}$ There $x = 1.87$ In the use of the cos 2θ formula rect quadratic in cos θ that ic in cos θ there $\theta = 60$ and no others in the range vers outside the given range) $\frac{x}{t} = \frac{-2}{1-2t} \text{ or } \frac{dy}{dt} = -2t^{-2}$ $r = \frac{dy}{dt} \div \frac{dx}{dt}$ given answer correctly	A1 M1(dep*) A1 M1 A1 M1 A1 B1 M1 A1	[4]
	Dbtain x logSolve for xDbtain answerMake relevanDbtain a correstSolve a quadDbtain answerIgnore answeri) State $\frac{dy}{dx}$ Use $\frac{dy}{dx}$ Obtain aState or	$f_{t} = (2x - 1) \log 3 \text{ or equivalent}$ There $x = 1.87$ Intrust of the $\cos 2\theta$ formula rect quadratic in $\cos \theta$ there $\theta = 60$ and no others in the range vers outside the given range) $\frac{x}{t} = \frac{-2}{1-2t} \text{ or } \frac{dy}{dt} = -2t^{-2}$ $f_{t} = \frac{dy}{dt} \div \frac{dx}{dt}$	A1 M1(dep*) A1 M1 A1 M1 A1 B1 M1	[4]

Pag	ge 5	Mark Scheme	Syllabu.	er
		GCE AS LEVEL – October/November 2012	9709 203	
			19	2
(i)	Attempt to	o integrate and use limits θ and π	Syllabu 9709 A R B	non
	Obtain 1–		A	14
		area of rectangle = $\theta \cos \theta$, equate area of rectangle to area of	R	і Г1 [.]
	and rearra	inge to given equation	В	L [1
(iii)	Use the ite	erative formula correctly at least once	M	l
	Obtain fin	hal answer 0.56	A	l
		ficient iterations to justify its accuracy to 2 d.p. or show there		
	sign chang	ge in the interval (0.555, 0.565)	B	[3]
		nply correct ordinates 0.125, 0.08743, 0.21511	B	
		ct formula, or equivalent, correctly with $h = 0.5$ and three ordi		
	Obtain and	swer 0.11 with no errors seen	A	[3]
	•	2x		
(b)	Attempt to	o expand brackets and divide by e^{2x} a term of form ke^{-x} or ke^{-2x} correctly	M Alv	
		correct terms	Al	
		ect integral $x + 4e^{-x} - 2e^{-2x} + c$	A	
		x = -1, equate to zero and obtain a correct equation in any fo		
		x = 3 and equate to 12	M	
		correct equation in any form e^{-1} event pair of equations for <i>a</i> or for <i>b</i>	A M	
		= -4 and $b = 6$	A	
	Obtain a		11	L [J.
		livision by $x^2 - 2$ and reach a partial quotient of $2x - k$	M	
		totient $2x - 4$	A	
	Obtain rer	mainder -2	A	[3]
	Difference	ete union alla in an anatient mile		I
		ate using chain or quotient rule rivative in any correct form	M A	
		ven answer correctly	A	
	5 - 2000 - 811	· · · · · · · · · · · · · · · · · · ·	11.	L ⁹ .
		ate using product rule	M	
		vative of $\tan \theta = \sec^2 \theta$	B	
	Use trig id	dentity $1 + \tan^2 \theta = \sec^2 \theta$ correctly	M	
	Obtain 2se	$ec^3 \theta - sec \theta$	A	l [4]
(iii)	Use tan ² .	$x = \sec^2 \theta - 1$ to integrate $\tan^2 x$	Μ	l
	Obtain 3se	ec θ from integration of 3sec θ tan θ	B	
		$n \theta - 3 \sec \theta$	A	
		o substitute limits, using exact values	M	
	Obtain and	swer $4 - 3\sqrt{2}$	A	l [5]