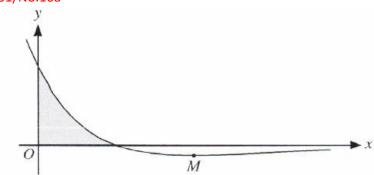

Differentiation – 2020 A2 Math

1. Nov/2020/Paper_9709/31/No.3

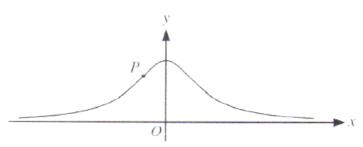

The parametric equations of a curve are

2 ios 0 | 6000 Sino Co dy = 601 00

Papacamoridos

2. Nov/2020/Paper_9709/31/No.10a

The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point *M*.


(a) Find the exact coordinates of M.

product rule V'vouv'
4 = 2-26
$dv' = -1$ $v = e^{-h^2}$
$\frac{1}{\sqrt{2}}$
TOK I
$-e^{-\frac{1}{2}}$ - (- $\frac{1}{2}e^{-\frac{1}{2}}$)
-eo-e'+yxe''-o
mex 1 min du
$\frac{1}{2e^{-h/L}} + \sqrt{2e^{-h/L}} = 0$
la ha ha

[5]

 \mathcal{X} =0 $\frac{\gamma}{z} = 2$ $\chi = 4$ y = R - 4 deor -2 pz Papacanto MI 41 2

3. Nov/2020/Paper_9709/32/No.5

The diagram shows the curve with parametric equations

$$x = \tan \theta, \quad y = \cos^2 \theta,$$

- for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.
- (a) Show that the gradient of the curve at the point with parameter θ is $-2\sin\theta\cos^3\theta$. [3]

Jx =	sec ² I	dy	Ozic	bosino
66		10		
	δy -)+ -	-2 sind Coolax
	Jx C	0 6	Jx	Secro
	- Pho C	2000 X	w~20	
	20			
	-2sino C	60 ³ 0 .		
**				

The gradient of the curve has its maximum value at the point P.

(b) Find the exact value of the *x*-coordinate of *P*.

[4]

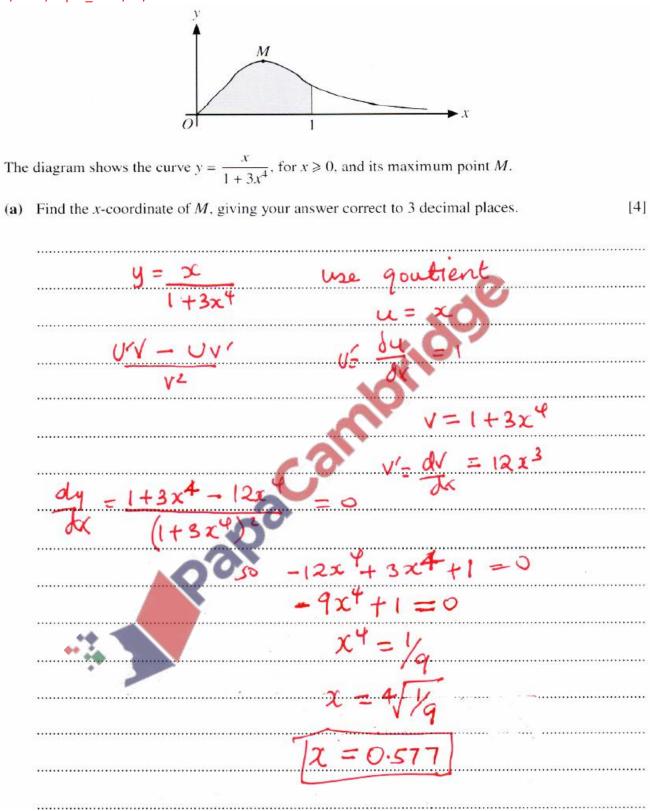
0 - 7
$m = -2 \sin 0 \cos^3 \theta$
<u> </u>
$u = -2\sin 0 V = \cos^3 0$
$\frac{\partial t_{x}}{\partial x} = -2\cos \theta \qquad \frac{\partial v}{\partial x} = -3\sin \theta \cos^{2} \theta $
$\frac{dm}{da} = -2\cos^2\theta + 6\sin^2\theta\cos^2\theta = 1$
JA TOTAL
6 sin20 cont = 2 cos 0
tor to to
65020 = 20020
651m2 0 = 2
tan20 = 3/6
$ano = \pm \frac{1}{2}$
Q = -1/ F1 -
V 16"
2 - tan (-1/277)
<u>~ 1</u>
$\chi = -1$
V 3

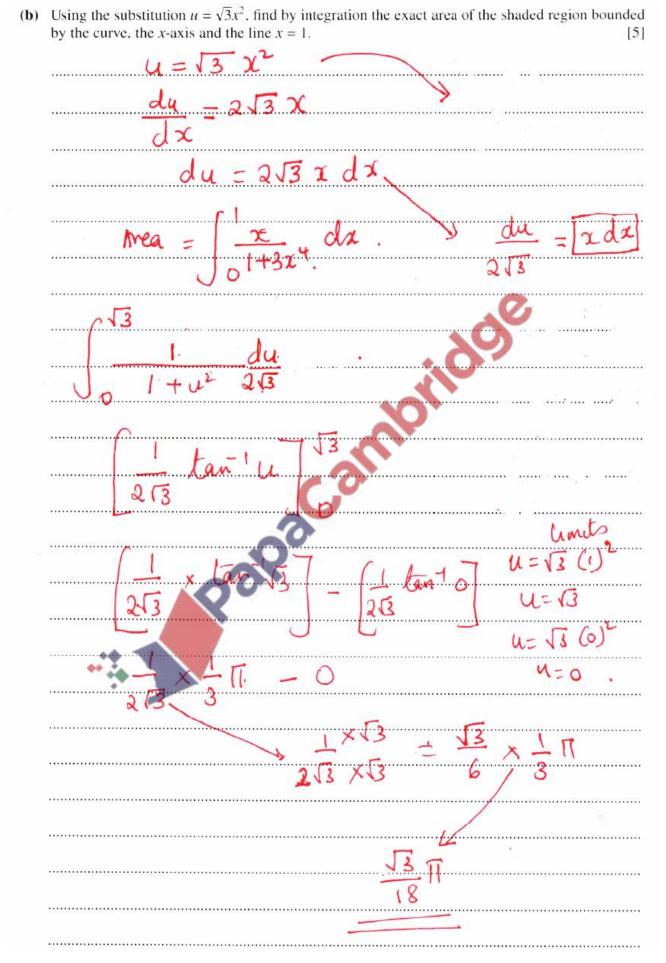
4. June/2020/Paper_9709/31/No.4

The curve with equation $y = e^{2x}(\sin x + 3\cos x)$ has a stationary point in the interval $0 \le x \le \pi$.

(a) Find the *x*-coordinate of this point, giving your answer correct to 2 decimal places. [4] V=SINX+3COSX U= $v' = \cos \alpha - 3 \sin \alpha$ cr U'=2 sing et mle U'V + UV' (sin x + 3 cos 2) (602-351nx 22 OCIV dx cosi cost ma an ,42° .43

(b) Determine whether the stationary point is a maximum or a minimum. [2] dry = 2e2x (760x -sinx)+ U= 22x 0'=2e2x $dx^2 = e^{2x}(-7sinx - cosx) = 7cosx - sinx$ v'= -7sinx - cosx(7002-Sinx)+ e22(-7 sinx-cosx) when \$=1.43 y = 0 maxamum. Papacampino


5. June/2020/Paper_9709/32/No.4


A curve has equation $y = \cos x \sin 2x$.

Find the *x*-coordinate of the stationary point in the interval $0 < x < \frac{1}{2}\pi$, giving your answer correct to 3 significant figures. [6]

V=Sm2x U= Losse use set rule U'=-SINX V'=26021 - SMX-SIN2X + 2 COOX COO2X (2511x (00x)+ 2 (00x (2100 x-i - sina -2SINSC COSI -2Cosx 2002 10031 -2(0x -260 +2000 $6 \cos^3 x$ excallent = x co4 cos x 6 x acosx 00 x οςχ (0) x = 0.61s

6. June/2020/Paper_9709/32/No.6

7. June/2020/Paper_9709/33/No.4

The equation of a curve is $y = x \tan^{-1}(\frac{1}{2}x)$.

(a)	Find $\frac{dy}{dx}$. [3]						
	$u = x v = \tan^{-1}\left(\frac{1}{2}x\right) = \tan^{-1}\left(\frac{x}{2}\right)$						
	$U'=1 \qquad V'=2$						
	x^2+4						
	U'V + UV'						
	$\frac{dy}{dx} = \frac{\tan^{-1}(\frac{1}{2}x) + 2x}{x^2 + 4}$						
	dx x+4						
(b)	The tangent to the curve at the point where $x = 2$ meets the y-axis at the point with coordinates $(0, p)$.						
	Find <i>p</i> . [3]						
	$y = x \tan^{-1}(2x)$ when $x = 2$						
	$y = 2 \int e^{-1} \left(\frac{1}{2} \times 2 \right) = \frac{1}{2} \frac{1}{1}$						
	dy - (1) + 2x2 - TILL + #10						
	$\frac{1}{2^{2}+4} = \frac{1}{4} + \frac{1}{4} $						
	•• $y = \frac{1}{2} = \frac{1}{4} + 2(x - 2)$						
	$\frac{y - y_{T}}{4} = \frac{T + 2}{2} \text{when } x = 0$						
	$y = -\frac{\pi}{2} + \frac{1}{2\pi} y = -1$						

8. March/2020/Paper_9709/32/No.7

The equation of a curve is $x^3 + 3xy^2 - y^3 = 5$.

(a) Show that
$$\frac{dy}{dx} = \frac{x^2 + y^2}{y^2 - 2xy}$$
. [4]

$$\frac{x^3 + 3x y^2 - y^3 = 5}{y}$$

$$\frac{3x^2 + 3y^2 + 6xy dy}{dx} - 3y^2 dy = 0$$

$$\frac{3x^2 + 3y^2}{dx} = 3y^2 dy / dx - 6xy$$

$$\frac{3x^2 + 3y^2}{dx} = dy$$

$$\frac{3x^2 + 3y^2}{dx} = -6xy$$

$$\frac{dy}{dx} = \frac{3x^2 + 3y^2}{dx} = -6xy$$

(b)	Find the coordinates of the	ooints on the curve where the tangent is parallel to the y-axis.	[5
------------	-----------------------------	--	----

parallel to y axis denominator to zero y axis eq 2 = 2xy = 2% χ³ -3 25 + χ3 $12x^3$ + 8 52-12 2 - $\chi^3 =$ 5 ansily Chari