<u>Differentiation – 2023 Nov CIE Mathematics</u>

1. Nov/2023/Paper_9709/21/No.2

A curve has equation $y = 3 \tan \frac{1}{2}x \cos 2x$.

Find the gradient of the curve at the point for which $x = \frac{1}{3}\pi$.

[5]

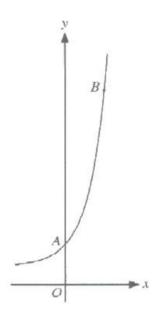
SPC 2 Cos 2x Cos 2 x Jin 22 tan tos 2 x 2605

$$|X| = \frac{1}{2} \pi \left(\frac{1}{2} \pi \right) = \frac{3 \cos \left(\frac{2}{2} \times \frac{1}{2} \pi \right)}{2 \left(\frac{1}{2} \pi \right) \left(\frac{1}{2} \times \frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} \left(\frac{1}{2} \right)$$

$$= \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2} \pi \right)} = \frac{3 \left(-0.5 \right)}{2 \left(\frac{1}{2$$

Palpacainibildos.

2. Nov/2023/Paper_9709/22/No.6



The diagram shows the curve with parametric equations

$$x = 3 \ln(2t - 3), \quad y = 4t \ln t$$

[5]

The curve crosses the y-axis at the point A. At the point B, the gradient of the curve is 12.

(a) Find the exact gradient of the curve at A.

(h) Show that the value of the parameter t at B satisfies the equation

$$t = \frac{9}{1 + \ln t} + \frac{3}{2}.$$
 [2]

Af B
$$\frac{dq}{dx} = 12$$

From (a) $dy = (4 \ln t + 4)(2t - 1) = 12$
 $dx = 6$

=) $(4 \ln t + 4)(2t - 1) = 6 \times 12$
 $(4 \ln t + 4)(2t - 1) = 72$
 $4 \ln t / 44 = 4 \ln t + 4$
 $2t - 3 = 72 = 9$
 $4 (\ln t + 1) = 18$
 $4 (\ln t + 1) = 18$
 $\ln t + 1 = 9$
 $\ln t +$

(c) Use an iterative formula, based on the equation in (b), to find the value of t at B, giving your answer correct to 3 significant figures. Use an initial value of 5 and give the result of each iteration to 5 significant figures. [3]

| terative formular:
$$\frac{1}{3} = \frac{9}{4} + \frac{3}{4}$$
 $\frac{1}{1+1} = \frac{9}{1+1} + \frac{3}{4} = \frac{1}{1+1} = \frac{9}{1+1} = \frac{1}{1+1} = \frac{9}{1+1} = \frac{1}{1+1} = \frac{9}{1+1} = \frac{1}{1+1} = \frac{9}{1+1} = \frac{1}{1+1} = \frac{$

3. Nov/2023/Paper_9709/31/No.1

Find the exact coordinates of the points on the curve $y = \frac{x^2}{1-3x}$ at which the gradient of the tangent is equal to 8.

Gradient = dy = 8	8 [1(1-3x)-3x(1-3x)] = 2x-3x
d×	8[1-3x-3x+9x]=2x-3x
Wring quotient rule: .	8 [1 - 6 x + 9 x] = 22 - 3x
***************************************	8-48x + 72x -2x +3x =0
dx dx dx	75x2 - 50 x + 8 =0
ν'	Solving for using the
let u = x'	Quadratic formular:
δυ = 2 x	x = (-50) + (-50)2-4(75)(8)
9 ×	2 X 75

LPF V = 1-3 =	= 50 110
dv = -3	02)
ط عد	2 = 50-10 = 4 x = 50+10 22
dy = (1-3x)(2x)-x(-3)	150 15 150 5
dx (1-3x)	When x = 4 , y = (") 2
$= 2x - 6x^2 + 3x$	$15 \qquad 1-3\left(\frac{u}{15}\right)$
(1-3 x)	= 16
$= 2x - 3x^2$	45
(1 - 3 xc) 2-	When $x = \sqrt{\frac{2}{s}}$
But dy = 8	
d ×	1-3(\frac{2}{5})
$2x - 3x^2 - 8$	= -4
(1-bx)2	Coordinates are:
$\Rightarrow 8 \left(1 - 3x \right)^2 = 2x$	$\left(\frac{4}{15}, \frac{16}{43}\right)$ and $\left(\frac{2}{5}, -\frac{4}{5}\right)$
-: Pale	

4. Nov/2023/Paper_9709/31/No.6

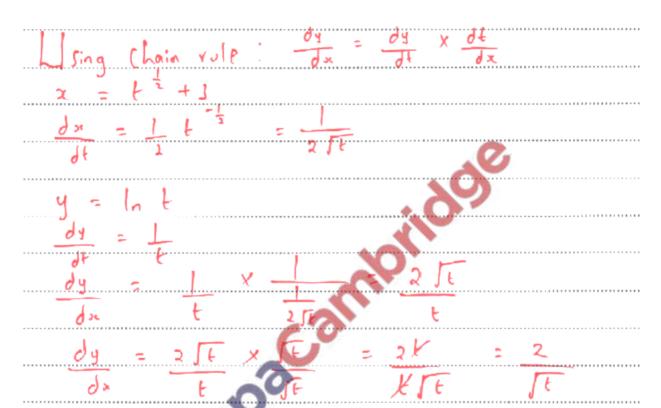
The parametric equations of a curve are

$$x = \sqrt{t} + 3$$
, $y = \ln t$,

for t > 0.

(a) Obtain a simplified expression for $\frac{dy}{dx}$ in terms of t.

[3]



(b) Hence find the exact coordinates of the point on the curve at which the gradient of the normal is -2.

Gradient of the tengent = $\frac{dy}{dx}$: x = 4 + 3 = 7 $m_r = \frac{dy}{dx} = 2$ $y = \ln 16$ $m_r = \frac{-1}{\sqrt{E}} = \frac{-1}{\sqrt{E}} = \frac{16}{\sqrt{E}}$ The coordinates are: $m_r = \frac{-1}{\sqrt{E}} = \frac{-1}{\sqrt{E}} = \frac{16}{\sqrt{E}}$

5. Nov/2023/Paper_9709/32/No.2

The parametric equations of a curve are

$$x = (\ln t)^2, \qquad y = e^{2-t^2},$$

[4]

for t > 0.

Find the gradient of the curve at the point where t = e, simplifying your answer.

This the gradient of the curve at the point where t = 0, shipmying your answer.	[1]
aradient = dy	
Using Chain rule: dy = dy x dt or d	ţ.
dx dt da e) र) โ
y = p 2-th (using product rule)	
$dy = 0^{2-t} \cdot d \left(2-t^2\right)$	**************
dt dt	
$\frac{\partial f}{\partial t} = e^{2-t} \left(-2t\right) = 2te^{2-t}$.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$x = (n +)^2$	
$\frac{dx}{dx} = 2 \left(\ln t \right)^{(2-1)} \left(\ln t \right)$	
dt dt	
= 2 n t = 2 n t	
E .	
$\Rightarrow dy \Rightarrow = -\chi + e^{2-t} \times 1 = -\chi + e^{2-t} \times$	+
2 In t	11nt
$=-t^2e^{2-t^2}$	
lnt .1	
When t = e dy = -e2 (e2-e), 60	t Inesl
dx Inp	lanzat
= -e (e indic	21
= (e 2+2-e-)	

6. Nov/2023/Paper_9709/33/No.5

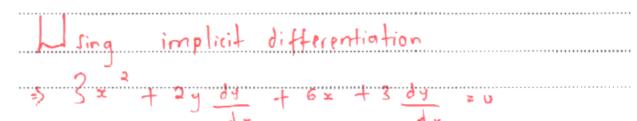
Find the exact coordinates of the stationary points of the curve $y = \frac{e^{3x^2-1}}{1-x^2}$. [6]

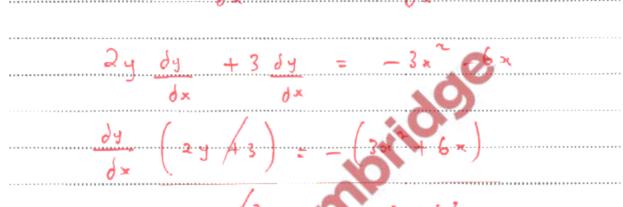
For Stationary points, Set	5) 8 x - 6x = 0
dy = 0	$2x\left(4-3x^2\right)=0$
Wring quotient rule:	X=0, 4-3x = 0
dy = V du _ u dv	x = 0 / x = 4 => x = 4]
9x	$x = \pm \frac{2}{5} \times \frac{1}{1} = \pm \frac{2}{3}$
V .	fs fr
$dv = e^{3x^{-1}}$	When x = 0 - = e = = e =
$dU = P^{3x-1} \cdot d \left(3x^{2}-1\right)$	1-0
d× d×	$\angle 10 \times = \pm 2\sqrt{1}$
= e ^{3x-1} . (6x)	3
= 6x e 8x'-1	$y = 0 \left(\pm 2 \frac{1}{2} \right)^2 - 1$
LP+ V = 1-x	
dv = -23	1 - (+2 []
3 o y = (1-x2) (6x8 3x2-1) -	3(4)-1
5 dy = (1-x1)(6x 83x-1) -	= <u>e</u>
dx (0 (x (-) x)	1 - 4
1 - *1)	3 —1
3*2-1/	= -3e
$= \frac{1}{2} \left(6x \left(1 - x^{2} \right) - \left(-1x \right) \right) = 0$: The Coordinates are:
$\frac{\left(1-x^2\right)^2}{3x^2-1}$	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$
$= \sqrt{6x - 6x^{2} + 3x} = 8$	
$D^{3x^{1}-1}\left(8x-6x^{3}\right)=0$	and (2) - 30
7,1-1	3
But e > for all -x	

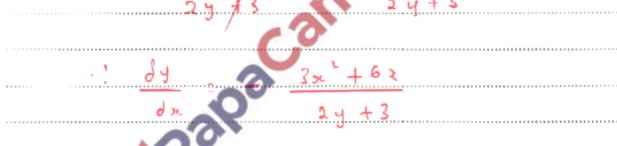
7. Nov/2023/Paper_9709/33/No.7

The equation of a curve is $x^3 + y^2 + 3x^2 + 3y = 4$.

(a) Show that $\frac{dy}{dx} = -\frac{3x^2 + 6x}{2y + 3}$. [3]







0.18