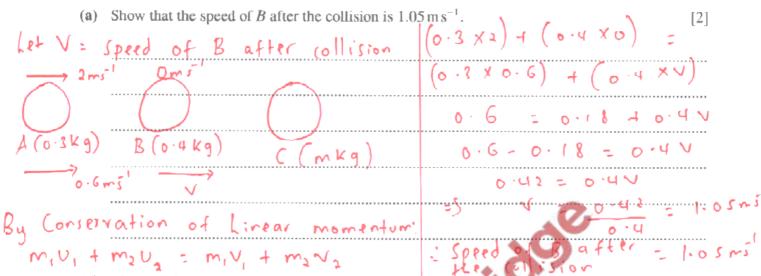
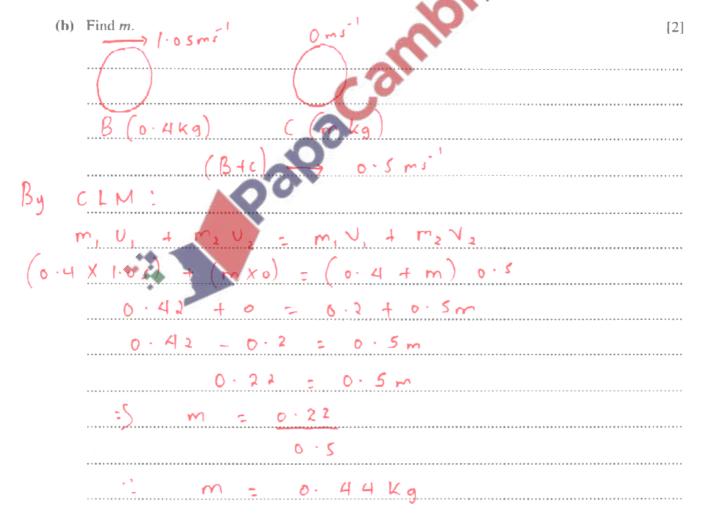
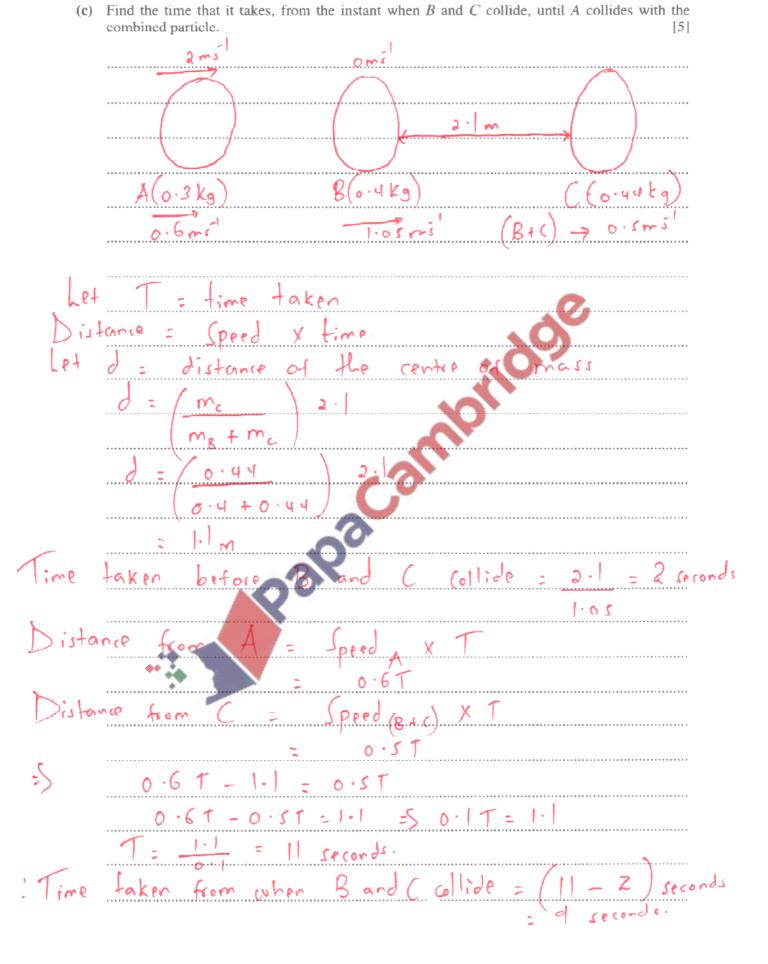

<u>Impulse and Momentum – 2022 Nov AS</u>


1. Nov/2022/Paper_9709_41/No.2

Small smooth spheres A and B, of equal radii and of masses 6 kg and 2 kg respectively, lie on a smooth horizontal plane. Initially A is moving towards B with speed 5 m s^{-1} and B is moving towards A with speed 3 m s^{-1} . After the spheres collide, both A and B move in the same direction and the difference in the speeds of the spheres is 2 m s^{-1} .



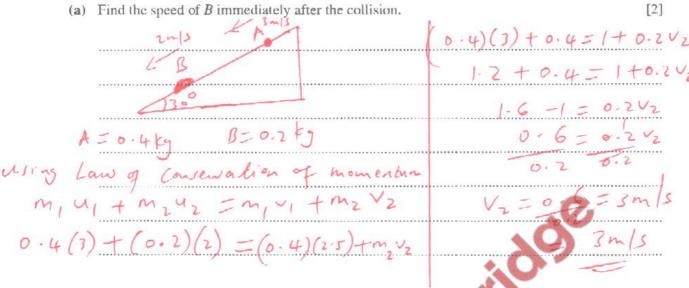

2. Nov/2022/Paper_9709_42/No.6

Three particles A, B and C of masses 0.3 kg, 0.4 kg and m kg respectively lie at rest in a straight line on a smooth horizontal plane. The distance between B and C is 2.1 m. A is projected directly towards B with speed $2 \,\mathrm{m \, s^{-1}}$. After A collides with B the speed of A is reduced to $0.6 \,\mathrm{m \, s^{-1}}$, still moving in the same direction.

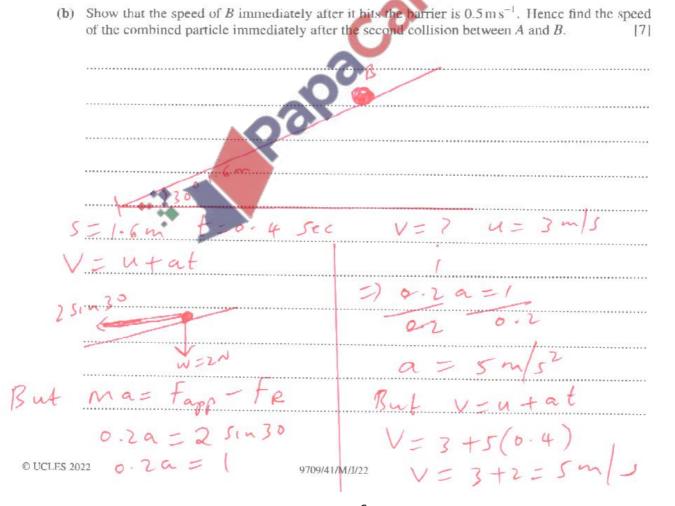
After the collision between A and B, B moves directly towards C. Particle B now collides with C. After this collision, the two particles coalesce and have a combined speed of $0.5 \,\mathrm{m\,s^{-1}}$.

3. March/2022/Paper_9709/42/No.7

A bead, A, of mass 0.1 kg is threaded on a long straight rigid wire which is inclined at $\sin^{-1}(\frac{7}{25})$ to the horizontal. A is released from rest and moves down the wire. The coefficient of friction between A and the wire is μ . When A has travelled 0.45 m down the wire, its speed is $0.6 \,\mathrm{m\,s^{-1}}$.


(a) Show that $\mu = 0.25$.	[6]
ð	0.(26 = 0.018 + (MXP)
Sin-1/2/25)	
	0.126=0-018+
Now using Energy Zourton	(MX0.1X10X24)0.45
1 G. P. E = Change in gravitational	
potential energy.	A () 12 () (
	0-126 = 0-018+ Fg
Energy	0.108=0.432M
3 AGIPE = AFIET WE	0.108=0.4324
Wy = work done against friction	0.472 U = 0.108
AG. P.E = A K-E + WA	0-432
mgh = 1 m(v2-u2) + Wf	0.43 2
2	
-) (0.1) (10) (20 × C45) =	=) M = 0.25
2.]	
[0.10.65-0]+(Fx0.45)	$\mu = 0.25$
FF = frictional force	ghown.
	<i>V</i>
=) 0.126 = 0.018 + MR (0.45)	
Recall FS = MR ; Where	
R = mg Cost © UCLES 2022 = M mg Cost 9709/42/F/M/22 = M mg Cost 9709/42/F/M/22	
s) tf -/ J	

Another bead, B, of mass $0.5 \,\mathrm{kg}$ is also threaded on the wire. At the point where A has travelled $0.45 \,\mathrm{m}$ down the wire, it hits B which is instantaneously at rest on the wire. A is brought to instantaneous rest in the collision. The coefficient of friction between B and the wire is 0.275.


(b) Find the time from when the collision occurs until A co	llides with B again. [6]
using Law of Conservation	
of momentum	(0.1) × 10 × 7/2 - F = ma
	[25]
=) MAU + MU = MV + MBVB	7, - (0.25)(0.1) XIOX29
	125
, We're Cancelling MRUB	= 0.1a
Leave initially B is not	
moving	7, - 6 0.1 a
- Again We're Cancelling A	25 28
Because after Collision A	10=0.1a
is Lrought into rest.	0.04=0-19
(0.1)(0.6) = (0.5), VB	0.1
	= 0.4m/s2
0.06 = 0.5 VB	^
0.5	for Bead B
VB=0.06=00m/s	ngsino - +f = ma
	(0.5 ×10× 7/25)-(0.275)X
Now, using New to 22 Law	0.5 X1 0 X2 4
of motion fina	±0.5a
TR=no	0.5a=1.4-1.32
C.10	v=5a = 0.08
	a = 0.16m/s2
77.78	······································
	5 = 50 + ut + 1 at
for seed A / Vw = mg	$ a_1 _{t=0}^{t}$
$W sind - f_f = na$	$A = \frac{1}{2}(0.4)t$ 0.12t(t-1)=0
mgsind - Fr = ma	SA = 0.12t +1(0.19t
© UCLES 2022 9709/42/F/M/22	SB = 0.12t +0.08t2 t= Sec
	54 = 5B 0.2+2 = 0.(2t+0.08t ²
	0.24

4. June/2022/Paper_9709/41/No.7

Two particles A and B, of masses $0.4 \,\mathrm{kg}$ and $0.2 \,\mathrm{kg}$ respectively, are moving down the same line of greatest slope of a smooth plane. The plane is inclined at 30° to the horizontal, and A is higher up the plane than B. When the particles collide, the speeds of A and B are $3 \,\mathrm{m \, s^{-1}}$ and $2 \,\mathrm{m \, s^{-1}}$ respectively. In the collision between the particles, the speed of A is reduced to $2.5 \,\mathrm{m \, s^{-1}}$.

After the collision, when B has moved 1.6 m down the plane from the point of collision, it hits a barrier and returns back up the same line of greatest slope. B hits the barrier 0.4s after the collision, and when it hits the barrier, its speed is reduced by 90%. The two particles collide again 0.44s after their previous collision, and they then coalesce on impact.

1.88 -0.06 = 0.6V 1.82 =0,6V

5. June/2022/Paper_9709/42/No.1

Small smooth spheres A and B, of equal radii and of masses 5 kg and 3 kg respectively, lie on a smooth horizontal plane. Initially B is at rest and A is moving towards B with speed $8.5 \,\mathrm{m\,s^{-1}}$. The spheres collide and after the collision A continues to move in the same direction but with a quarter of the speed of B.

of B.	
(a) Find the speed of B after the collision.	[3]
u=8.5m/s u=om/s	=> 42.5+0=17_V
	4
(A) (B)	
smoot surface means	=) 17 V = 42.5
	4
frictional full is ten.	(() ()
4	4.25 V = 42-5
After Collision. (A) B) = AB	
Coalesce and more in the s	ame 4.25
direction.	VE lom/s
Now using Law of Conserva	tron : 5 pred of B
of momentum	acter Collision
=) m, u, + m, u, = m, v, + m	- 10 m/s
$5(3.5) + 3(0) = 5(14 \lor) + 3 \lor$	
(b) Find the loss of kinetic energy of the system of	due to the collision. [2]
(b) Find the loss of kinetic energy of the system to	
K.E. Finedic Engry	k.Eafter Collision
=> K.E Gefore - Inguiz-	$= (-)(2-5)^2 + (3)(10)^2$
Collision 2 12 m2 W22	2
$= 10(5)(8.5)^2$	=15.625+150
2	= 165.625 J
+ = (3)(0)	=7 loss in K.E
$-1(5)(8.5)^{2}+1(3)(0)^{2}$	= 180.625-165.625
2	= 15.T
= 180.625+0	
- 180.62JJ	= 15 J ·
K.E after Collision	
© UCLES 2022 9709/42/M	M/22

6. June/2022/Paper_9709/43/No.1

Two particles P and Q, of masses 0.3 kg and 0.2 kg respectively, are at rest on a smooth horizontal plane. P is projected at a speed of $4 \,\mathrm{m\,s^{-1}}$ directly towards Q. After P and Q collide, Q begins to move with a speed of $3 \,\mathrm{m\,s^{-1}}$.

(a) Find the speed of P after the collision. [2]

P 4 $m_p = 0.3 \log$ $m_p = 0.3$