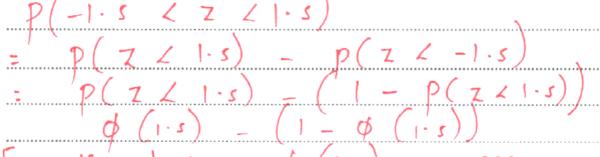
Normal Distribution – 2022 AS Nov/June Math \$1

1. Nov/2022/Paper_9709_51/No.4

In a large population, the systolic blood pressure (SBP) of adults is normally distributed with mean 125.4 and standard deviation 18.6.


(a) Find the probability that the SBP of a randomly chosen adult is less than 132.

Let f = SBP of adults f = SBP of adults f = SBP of adults f = SBP of f = SBP of

The SBP of 12-year-old children in the same population is normally distributed with mean 117. Of these children 88% have SBP more than 108.

Three adults are chosen at random from this population.

(c)	Find the probability	that each of these	three adults has SBP w	within 1.5 standard deviations of the
	mean.			[4]
	D/ 1. c	17	/ 1. e)	

From the fables
$$\phi(1.5) = 0.9372$$

= $0.9332 - (1 - 0.9332)$

2. Nov/2022/Paper_9709_53/No.2

In a large college, 32% of the students have blue eyes. A random sample of 80 students is chosen.

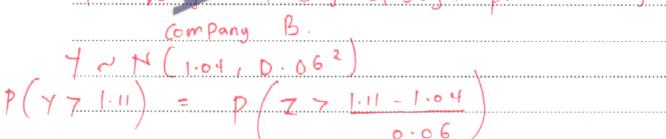
Use an approximation to find the probability that fewer than 20 of these students have blue eyes. [5]	
Probability of success (P) = 32% = 32 = 0.32	
100	
Let X = Number of students with blue eyes	
X ~ B (80, 0.32)	
- Since the sample size is large and P is close	
to o.s, the rormal distribution is used as an	
approximation to the binomial distribution.	
Mean = np = 80 x 0.32 = 250	
Variance = npg = 80 x 0.72 × (1-0.32)	
<u> </u>	
: 17 · 40 ·	
= X N B (80, 0.32) ~ 1 (25.6, JIT. 408)	
Applying continuity correction	_
7 = X-M	
117.408	
P (7 L - 1.462)	
1 - p (Z L 1. 462)	
** (1·46)	
= 1 - 0.9282	
- 0.0718	

3. Nov/2022/Paper_9709_53/No.5

Company A produces bags of sugar. An inspector finds that on average 10% of the bags are underweight.

10 of the bags are chosen at random.

(a) Find the probability that fewer than 3 of these bags are underweight. [3]


$$P\left(x>x\right) = \binom{n}{x} p^{x} \left(1-p\right)^{n-x}$$

$$P(X \subseteq 3) = P(X=0) + P(X=1) + P(X=1)^{2} (0.1)^{3} (0.9)^{3}$$

$$= (10)(0.1)^{6} (0.9)^{10} + (10)(0.1)^{1} (0.9)^{11} (0.9)^{2} (0.1)^{3} (0.9)^{6}$$

The weights of the bags of sugar produced by company
$$B$$
 are normally distributed with mean 1.04 kg and standard deviation 0.06 kg.

(b) Find the probability that a randomly chosen bag produced by company B weighs more than 1.11 kg.

= 1 - \$ (1.167)
- 1 - 0 - 8784
= 6.1216 = 0.122 (35f)
81% of the bags of sugar produced by company B weigh less than $w \log a$
(c) Find the value of w . [3] $ \frac{1}{\sqrt{1000}} \times \frac{1000}{\sqrt{1000}} \times \frac{1000}{\sqrt{10000}} \times \frac{1000}{\sqrt{1000}} \times \frac{1000}{\sqrt{1000}} \times \frac{1000}{\sqrt{10000}} \times$
$P(Y \angle w) = P(\overline{Z} \angle w = 1 \circ v) = 0.81$
The Z - inverse value of 0.81 (0' (0.81) = 0.878
2) W-1.04 2 0-878
$W = 1.94 = 0.06 \times 0.878$ $W = 1.04 = 0.05268$
m = 1.00 568 - 0.02568 + 1.02
·; M = 1.0d (31t)

4. Nov/2022/Paper_9709_52/No.2

The lengths of the rods produced by a company are normally distributed with mean 55.6 mm and standard deviation 1.2 mm.

(a) In a random sample of 400 of these rods, how many would you expect to have length less than 54.8 mm? Let

400

01

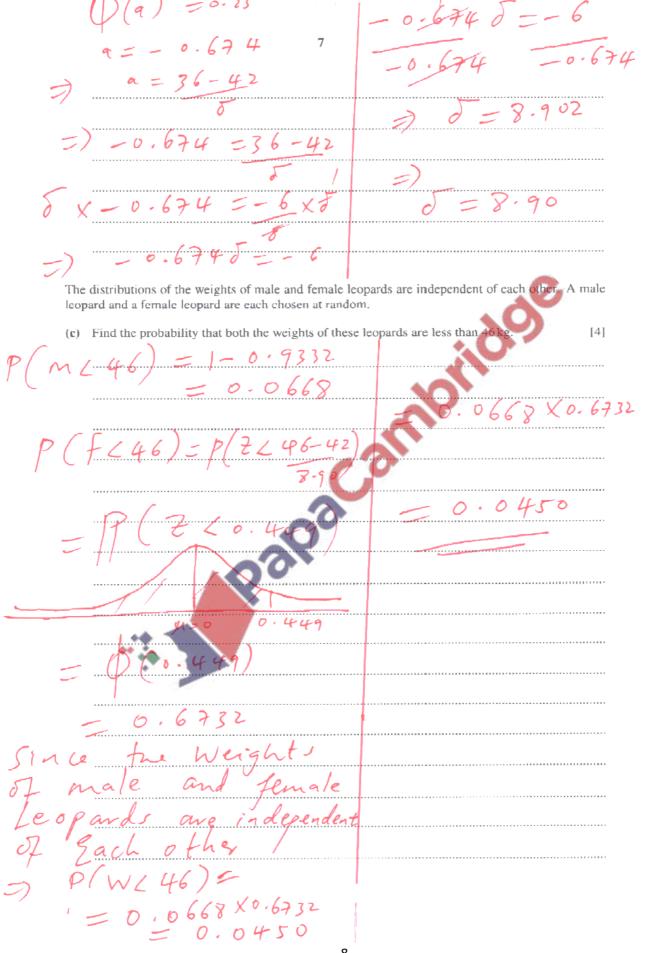
(b) Find the probability that a randomly chosen rod produced by this company has a length that is within half a standard deviation of the mean. [3]

5. March/2022/Paper_9709/52/No.4

The weights of male leopards in a particular region are normally distributed with mean $55\,\mathrm{kg}$ and standard deviation $6\,\mathrm{kg}$.

	male leopard from this region weighs between 46
and 62 kg.	[4]
$M \sim N(55, 6)$	= P(Z < 1.167)-P(Z <-1.5
=) P(46 Lm L 62) =	= 0.8784 -(i-p(7715))
- 12 (46-55 CEC 62 -3)	ly e have
-//	/ wed The
	Concept of
/	Symboling.
b /	1
= P (-1.5 Z Z Z 1.167)	- 0-8784 1- P(271.5)]
	- 6-3184-1+0.9332
	= 0.812
3. 1	
4=0 1:163	5 212
-1.5 ASS 1.15	0.8/2
	(a).
The weights of female leopards in this region are	normally distributed with mean 42 kg and standard
deviation σ kg. It is known that 25% of female le	opards in the region weigh less than 36 kg.
(b) Find the value of σ.	[3]
	6-25
F ~ / (~)	
11 = 163	
<i>j</i>	34 M=0
. h (F , -)	> -
D 1/ + 636/=0.23	=> 7 = -0.674
Since P[F/36/10.5	DCT-42/76-42 -0.25

Since pff236/20.5 p(f-42236-42)=0


from it inglies that

Final from p(72 a) = 0.25

from left tail of the

standard normal dry tribution flet a = 36-42

Standard normal dry tribution

6. June/2022/Paper_9709/52/No.4

The weights, in kg, of bags of rice produced by Anders have the distribution $N(2.02, 0.03^2)$.

(a) Find the probability that a randomly chosen bag of rice produced by Anders weighs between 1.98 and 2.03 kg.

The weights of bags of rice produced by Binders are normally distributed with mean $2.55\,\mathrm{kg}$ and standard deviation $\sigma\,\mathrm{kg}$. In a random sample of 5000 of these bags, 134 weighed more than $2.6\,\mathrm{kg}$.

(b) Find the value of σ .	[4]
W~N(2-55,5)	\rightarrow
$W \sim N(2.55, 5^2)$	1.93 = 2.6 - 2-55
M= mean = 2.55 and	
Variance = d²	
=) p(W72-6) = 134	Fx (1.93=(2.6-2.55)XF
500	
P(W72-6)=0.0268	1.930 = 2-6-2-55
0.0262	1.02 5 - 0:05
	171302000
N=0 2	193
Note: the area of the upper	=) d = 0.05
fail of the Armal	-/0=0.03
distribution = 0.0268	1.93
p(w <2.6) = 1-0.0268	5-,0.0259
$\Rightarrow P(W \le 2.6) = 0.9732$	<i>=</i>)
=> Z=1.93	F-2-3-C
Ge(a1) Z=W-U	0.0259.

7. June/2022/Paper_9709/53/No.5

Farmer Jones grows apples. The weights, in grams, of the apples grown this year are normally distributed with mean 170 and standard deviation 25. Apples that weigh between 142 grams and 205 grams are sold to a supermarket.

(a) Find the probability that a randomly chosen apple grown by Farmer Jones this year is sold to the supermarket.

Farmer Jones sells the apples to the supermarket at \$0.24 each. He sells apples that weigh more than 205 grams to a local shop at \$0.30 each. He does not sell apples that weigh less than 142 grams.

The total number of apples grown by Farmer Jones this year is 20 000.

(b) Calculate an estimate for his total income from this year	ear's apples.	[3]
p(x7205)=1-p(x=205)		
	= 3782.4	0+484-86
= 1-p/z = 205-170)	·····	
25]	= \$ 426	7.70
$=1-p(7\leq 1.4)$	de	267-20
	- # F	
$= 1 - \phi(1.4)$		
-1-0.9192	.0'	
Estimate = (0.788×20,000 ×0.14)	101	
	C.	
t (0.0808 X 2%000 X 0.30)	of the angles among this	your full on the
Farmer Tan also grows apples. The weights, in grams, distribution $N(182, 20^2)$. 72% of these apples have a weight	of the apples grown this ht more than w grams.	year ronow the
	_	
(c) Find the value of w.		[3]
(c) Find the value of w . (182)		
P(x) Find the value of w. (c) Find the value of w.)= W-182
(c) Find the value of w. $ \begin{array}{c} $	(-0.583)(20)= W-182
(c) Find the value of w. $ \begin{array}{c} $	(-0.583)(20	
(c) Find the value of w . $ \begin{array}{c} $	(-0.583)(28 -11.66= => W=-11)= W-182 W-182
P(y > w) = P(z) $P(y > w) = P(z)$	(- 0.583)(28 -11.66=)= W-182 W-182
(e) Find the value of w . $ \begin{array}{c} $	(-0.583)(28 -11.66= => W=-11)= W-182 W-182
P(77W) = 72/0 $P(77W) = 0.72$ $-W$ $2 = -0.583$	(-0.583)(28 -11.66= => W=-11)= W-182 W-182
P(y > w) = 7 $P(y > w) = 3$ $P(y > w) = 4$	(-0.583)(28 -11.66= => W=-11)= W-182 W-182
P(77W) = 72/0 $P(77W) = 0.72$ $-W$ $2 = -0.583$	(-0.583)(28 -11.66= => W=-11)= W-182 W-182