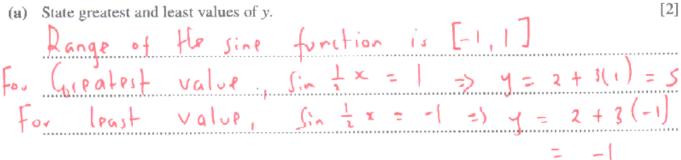
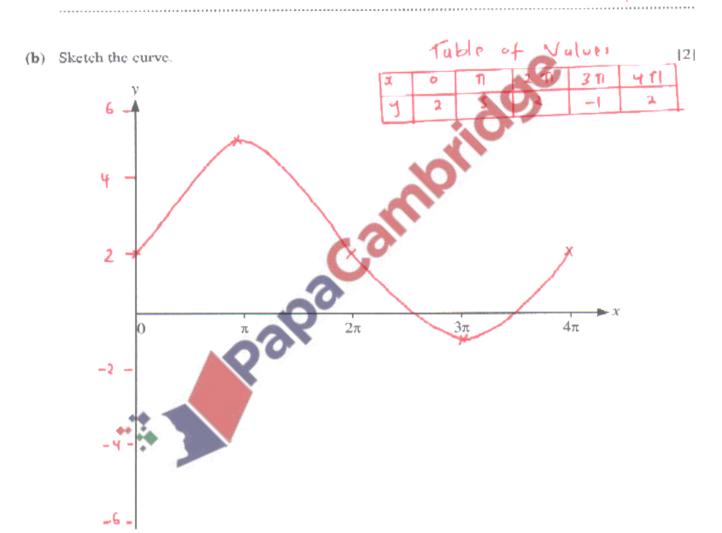
<u>Trigonometry – 2023 June AS Math 9709</u>


1. June/2023/Paper_9709/11/No.1


Solve the equation $4 \sin \theta + \tan \theta = 0$ for $0^{\circ} < \theta < 180^{\circ}$.	[3]
tan 0 = sin 0	
(ου β	
=> /4 sin 0 + (in 0 - 0) x cos 0	
cos B	
=> 4 sin 8 cos 0 + Sin 0 = 0	
(in B (4 cos 8 + 1) = 0	
=) \(\lin \theta = 0 \q	
Sin 0 = 0 , Cos 0 = -1	
10 -7	
Klen sino = 0 , 8 = 5-1 (0)	***************************************
6 P 0, 11	
Khen (010 = -100 0 = cos-1/-1	******
10	
B = 104.5° (3	160°-104.5°
= 104.5°, 2	35.5
For a 180	
B - 104.5°	,,.,,.

2. June/2023/Paper_9709/11/No.7

A curve has equation $y = 2 + 3 \sin \frac{1}{2}x$ for $0 \le x \le 4\pi$.

(a) State greatest and least values of y.

(c) State the number of solutions of the equation

$$2 + 3\sin\frac{1}{2}x = 5 - 2x$$

for $0 \le x \le 4\pi$.

3. June/2023/Paper_9709/12/No.7

(a) (i) By first expanding $(\cos \theta + \sin \theta)^2$, find the three solutions of the equation

$$(\cos\theta + \sin\theta)^2 = 1$$

$$20 - (1 - 1 - 2)$$

$$20 = \sin(0)$$

$$20 = 0, \Pi, 2\Pi$$

$$\theta = \frac{1}{2} \left(0, T_1, T_1 \right)$$

3

(ii) Hence verify that the only solutions of the equation $\cos \theta + \sin \theta = 1$ for $0 \le \theta \le \pi$ are 0 and $\frac{1}{2}\pi$. (os 0 + sin 0 = 1+0 Cos 1 + Sin 1 Palpacamon jolations are

(b) Prove the identity $\frac{\sin \theta}{\cos \theta + \sin \theta} + \frac{1 - \cos \theta}{\cos \theta - \sin \theta} = \frac{\cos \theta + \sin \theta - 1}{1 - 2\sin^2 \theta}$. [3] onsider the LHS: sin 0 + | - (000 = Sin 0 (000 - Sin 0 (COID + sin 0) (1- (OIB CosB-SinB Coso + sin B = Sin0(010 - Sin2 0 + 1 ((010 + Sin0) - cos0 (050 - Sino) + Sino (cost - Sino : Sing (610 - Sin 20 + CO10 + Sind - (6520 - ing (010 (or 10 - Sin & cose + Sin & cos 0 = (018 + sine - (sin 28 + co 28) (0528 - Sin'8 = (0s P + Sin B - 1 1 - sin 2 8 - sin 2 0 (c) Using the results of (a) (ii) and (b), solve the equation $\frac{\partial \theta}{\sin \theta} - 2(\cos \theta + \sin \theta - 1)$ $\int \sin \theta = \frac{1}{2} \int \cos 2\theta = \frac{1}{2} \cos 2\theta$ for $0 \le \theta \le \pi$. = Gos8 + Sin8 0 = Sin (+ 0.5) = 11, 511 from part (b) sino 1-2 sind Solving (i) 1058-SinB = 8 mi2 + 8 co) = (1-8 m)2+ 8 co) (Cos0 + sin0) = 1 1 - 2 sin2 8 Coile + sigle + 25:00(050 = 1 Cos + 5:00 -1 = 0 21in 8 (018 = 1-1 = 0 $\sin 2\theta = 0$ $\theta = \frac{1}{2} \sin^{-1}(0) = \frac{1}{2}(0, \pi)$ $= 0, \frac{1}{2} \pi$ -25in20 -: 0 = 0, 11, 11, 51

4. June/2023/Paper_9709/13/No.4

(a) Show that the equation

$$3 \tan^2 x - 3 \sin^2 x - 4 = 0$$

may be expressed in the form $a\cos^4 x + b\cos^2 x + c = 0$, where a, b and c are constants to be found.

$$3 \sin^2 x = 3 \sin^2 x - H = 0 \times \cos^2 x$$

$$\cos^2 x$$

$$3 \sin^2 x - 3 \sin^2 x \cos^2 x - 4 \cos^2 x$$

$$\frac{1}{2} \int_{-1}^{2} \frac{1}{3} \left(1 - \cos^{3} x \right) - \frac{1}{2} \cos^{3} x + \frac{1}{2} \cos^{3} x - 4 \cos^{3} x = 0$$

$$\Rightarrow$$
 $a = 3$, $b = 3$ and $c = 3$

Let
$$\cos^2 z = y$$
 (or $sc = \pm 13$ is not define $3y = 10y + 3 = 0$.) (or $sc = \pm 13$ is not define $y = 1$ (or $y = 1$) ($y = 3$) = 0

 $y = 1$ ($y = 3$) = 0

 $y = 1$ ($y = 3$) = 0

 $y = 1$ ($y = 3$) = 0

$$Cos^{2} = \frac{1}{3}$$

$$Cos = \pm 1 + \pm 3$$