Work, energy and power – 2023 Nov CIE Mathematics

1. Nov/2023/Paper_9709/41/No.1

A particle of mass 1.6 kg is projected with a speed of 20 m s⁻¹ up a line of greatest slope of a smooth plane inclined at α to the horizontal, where $\tan \alpha = \frac{3}{4}$.

Use an energy method to find the distance the particle moves up the plane before coming to instantaneous rest.

2. Nov/2023/Paper_9709/41/No.6

A car of mass 1300kg is moving on a straight road.

(a) On a horizontal section of the road, the car has a constant speed of 30 m s⁻¹ and there is a constant force of 650 N resisting the motion.

(i) Calculate, in kW, the power developed by the engine of the car.

[2]

Since the car is moving at a Constant speed

Driving force = Resistance force = 650 N

Dower = F V

= 650 X 20

= 19500 W

Power = 19500 + 19.5 kK

the car						-> 3°		celeration of
	650	N 🚣	-{()	1300 Kg			DF	
P.	wer =	19-	5 + 9	= 28	· 5 K	Kl =	28 50	للاه
	Power	<u> </u>	> F ×	∨ ⇒	DF	= P	<u>.</u>	28500
		***************************************					=	950 N
		horiz			J	Vinto		sprond
La		_ 65		F = 1	ra			
	950	65	0 = 1	300 0	33	300 =	136	
	• • • • • • • • • • • • • • • • • • • •			Co			•	- 3 mi
			000	•				
		18	0.					

(h)	On a section of the road inclined at sin ⁻¹ 0.08 to the horizontal, the resistance to the motion of
	the car is $(1000 + 20v)$ N when the speed of the car is $v \mathrm{ms^{-1}}$. The car travels downwards along
	this section of the road at constant speed with the engine working at 11.5 kW.

Find this constant speed.

[4]

Let & be the angle the road makes with the
horizontal.
=> Sin X = 0.08
DF COLO
13009 N
DF : P = 11500
V
Loss ving Parallel to the plane using Nowton's
Sprond law of motion, f=ma
Dr + 1000 / - (1000 + 20N) = 0 (No acceleration)
down to slope)
(1300 X 10 X 0.08) - 1000 - 20 V = 0
11300 + 1040 -1000 - 20 V =0
$(11500 + 40 - 20V = 0) \times V$
11300 + 400 - 200 =0
2 V + V) = V = 2 V = 11 = 0
But V70, 50 V = 25 mil

3. Nov/2023/Paper_9709/42/No.1

A block of mass $15\,\mathrm{kg}$ stides down a line of greatest slope of an inclined plane. The top of the plane is at a vertical height of $1.6\,\mathrm{m}$ above the level of the bottom of the plane. The speed of the block at the top of the plane is $2\,\mathrm{m\,s^{-1}}$ and the speed of the block at the bottom of the plane is $4\,\mathrm{m\,s^{-1}}$.

Find the work done against the resistance to motion of the block. [4]

Ky Conservation of energy: Klork done against = PE lost - KE gained

4. Nov/2023/Paper_9709/42/No.3

A block of mass 10 kg is at rest on a rough plane inclined at an angle of 30° to the horizontal. A force of 120 N is applied to the block at an angle of 20° above a line of greatest slope (see diagram). There is a force resisting the motion of the block and 200 J of work is done against this force when the block has moved a distance of 5 m up the plane from rest.

Find the speed of the block when it has moved a distance of 5 m up the plane from rest. [5]

5. Nov/2023/Paper_9709/43/No.4

A car has mass 1600 kg.

(a) The car is moving along a straight horizontal road at a constant speed of 24 m s⁻¹ and is subject to a constant resistance of magnitude 480 N.

Find, in kW, the rate at which the engine of the car is working.

ne= 480N

[2]

The car now moves down a hill inclined at an angle of θ to the horizontal, where $\sin \theta = 0.09$. The engine of the car is working at a constant rate of 12 kW. The speed of the car is 24 m s⁻¹ at the top of the hill. Ten seconds later the car has travelled 280 m down the hill and has speed 32 m s⁻¹.

480 X 24

(b) Given that the resistance is not constant, use an energy method to find the total work done against the resistance during the ten seconds. [5]

Ry Conservation of energy

Klock done = Gain in KR - Poss in PE + Klock done against resistance

Work done = PX = 12000 × 10 = 120000 J.

Gair in KE | mv²-1mv = (1×1600 x 3 2) - 1×1600 x 3 4 1
2 2 2 2 1

819 200 - 460 800 = 358 400 J

Loss in PE = mgh = 1600 × g × 280 sin B

= 1600 × 10 × 280 × 0.09

= 403 200

> 120000 = 358 400 - 407 200 + K/

120000 = -44 800 + K/

N, = 120000 + 44800 = 164800 I

Work done against resistance = 164800 I

Palpacambilde