

Cambridge

International

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/03
Paper 3 Pure Mathen	natics 3 (P3)	For E	xamination from 2017
SPECIMEN PAPER			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

•••	
••	•••••••
•	
••	
•••	
•••	••••••
••	••••••
••	
••	
•••	•••••
••	

figures.							
			•••••				
		•••••	•••••	•••••	•••••		•••••
•••••							
•••••				•••••			
•••••	•••••	•••••	••••••	•••••	•••••		•••••
••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••
•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
••••••	•••••	•••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
			•••••	•••••			
•••••		•••••	•••••				•••••
•••••							
•••••	•••••	•••••	•••••	•••••	•••••		•••••

[6]

3	The angles θ and ϕ lie between	en 0° and 180°	, and a	re such that
	t	$an(\theta - \phi) = 3$	and	$\tan\theta + \tan\phi = 1.$
	Find the possible values of θ	and ϕ .		

Find by ca	lculation the pair of consecutive integers between wh	nich α lies.
•••••		
•••••		
•••••		
a		
Snow that,	if a sequence of values given by the iterative formula	a
	$x_{n+1} = \sqrt{\left(x_n + \frac{6}{x_n}\right)}$	
converges,	then it converges to α .	I
•••••		
••••••		

(iii)	Use this iterative formula to determine α correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

5	The equation of a curve is $y = e^{-2x} \tan x$, for $0 \le x < \frac{1}{2}\pi$.
	(i) Obtain an expression for $\frac{dy}{dx}$ and show that it can be w

Obtain an expression for $\frac{1}{dx}$ and show that it can be written in the form $e^{-2x}(a+b\tan x)$ a and b are constants.	[5]
	••••••
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••
	••••••
	••••••
	••••••
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • •

		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
		•••••
		• • • • • • • • • • • • • • • • • • • •
(ii)	Explain why the gradient of the curve is never negative.	[1]
		•••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
(iii)	Find the value of x for which the gradient is least.	[1]
		• • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		•••••

Fir	and the values of a and b .
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
• • • •	
••••	
••••	
••••	
••••	
••••	
••••	
••••	

•••••
 •••••
•••••
•••••

7 The points A, B and C have position vectors, relative to the origin O, given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}.$$

The plane m is perpendicular to AB and contains the point C.

	Find a vector equation for the line passing through A and B .	[2]
		••••••
		••••••
		•••••••
(ii)	Obtain the equation of the plane m , giving your answer in the form $ax + by + cz = d$.	[2]
		•••••

The line through A and how that $CN = \sqrt{13}$	-	-	[5
••••••	 •••••	•••••	•••••
	 		•••••
	 		•••••
	 •••••	•••••	•••••
	 ••••••	•••••	•••••
	 		•••••
	 		•••••
	 ••••••	•••••	•••••

	8	The	variables x	and	θ	satisfy	the	differential	ec	uation
--	---	-----	-------------	-----	----------	---------	-----	--------------	----	--------

dx	$= (x+2)\sin^2 2\theta,$
$\mathrm{d} heta$	(** + =) 5111 = 0,

and it is given that $x = 0$ when $\theta = 0$. Solve the differential equation and calc $\theta = \frac{1}{4}\pi$, giving your answer correct to 3 significant figures.	[9]

The	complex number $3 - i$ is denoted by u . Its complex conjugate is denoted by u^* .
(i)	On an Argand diagram with origin O , show the points A , B and C representing the complex numbers u , u^* and $u^* - u$ respectively. What type of quadrilateral is $OABC$? [4]
(ii)	Showing your working and without using a calculator, express $\frac{u^*}{u}$ in the form $x + iy$, where x and y are real.

By considering the argume	ent of $\frac{u^*}{u}$, prove that	
	$\tan^{-1}(\frac{3}{4}) = 2\tan^{-1}(\frac{1}{3}).$	[3]

The diagram shows the curve $y = \frac{x^2}{1+x^3}$ for $x \ge 0$, and its maximum point M. The shaded region R is enclosed by the curve, the x-axis and the lines x = 1 and x = p.

(i)	Find the exact value of the x -coordinate of M .	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

3 significant figures.					[6
	•••••			•••••	
		••••••	•••••••		

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.