

Cambridge

International

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME									
CENTRE NUMBER					CANDIDATE NUMBER				
MATHEMATICS								97	09/05
Paper 5 Mechan	nics 2 (N	12)			For	Exami	natior	n from	2017
SPECIMEN PAP	ER					1	hour	15 mi	nutes
Candidates answ	ver on the	e Questi	on Pa	per.					
Additional Materi	ials:	List of F	ormul	ae (MF9)					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s^{-2} .

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

A particle is projected with speed $25 \mathrm{ms^{-1}}$ at an angle of 50° above the hori after projection when the particle has speed $18 \mathrm{ms^{-1}}$ and is rising.	
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •

2

IIC	le with centre O which is $0.4 \mathrm{m}$ vertically below A .	
(i)	Show that the tension in the string is 2.5 N.	[
		•••••
		•••••
		•••••
		•••••
		•••••
(ii)	Find the speed of P.	
(ii)	Find the speed of P .	
(ii)	Find the speed of <i>P</i> .	
(ii)	Find the speed of <i>P</i> .	
(ii)	Find the speed of <i>P</i> .	
(ii)	Find the speed of <i>P</i> .	
(ii)	Find the speed of <i>P</i> .	
(ii)	Find the speed of <i>P</i> .	
(ii)	Find the speed of P.	
(ii)	Find the speed of <i>P</i> .	
(ii)	Find the speed of P.	
(ii)	Find the speed of P.	
(ii)	Find the speed of P.	
(ii)	Find the speed of P.	
(ii)	Find the speed of P.	
(ii)	Find the speed of P.	

					ontal. Calcul		
						••••	
	•••••			•••••			•••••
•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
							•••••
						••••	
						•••••	•••••
••••••		•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
					•••••	•••••	
•••••		•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
••••••	•••••	•••••		•••••	•••••	•••••	•••••
•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
				•••••			•••••
		•••••			•••••	•••••	•••••
							•••••
							•••••

A particle P of mass 0.4 kg moves with constant speed in a horizontal circle on the smooth inner surface of a fixed hollow hemisphere with centre O and radius 0.5 m (see diagram).

(i)		en that the speed of the particle is $4 \mathrm{ms^{-1}}$ and its angular speed is $10 \mathrm{rads^{-1}}$, calculate the between OP and the vertical.	the [2]
(ii)		en instead that the magnitude of the force exerted on P by the hemisphere is 6 N, calculat	e
	(a)	the angle between OP and the vertical,	[2]
	(b)	the angular speed of P .	[3]
			••••

1101	ght of x m above the surface. The initial speed of P is 8 m s^{-1} .	
(i)	Show that, while <i>P</i> is moving upwards, $v \frac{dv}{dx} = -10 - 0.04v^2$.	[
		•••••
		••••
		••••
		••••
ii)	Find the greatest height of P above the surface.	ı
		••••
		••••
		••••

© UCLES 2016 9709/05/SP/17

•••	
•••	
•••	•••••
•••	••••••
•••	
•••	
•••	
•••	
•••	•••••
•••	
•••	
•••	••••••
•••	
•••	
•••	
•••	

An object is formed by joining a hemispherical shell of radius $0.2 \,\mathrm{m}$ and a solid cone with base radius $0.2 \,\mathrm{m}$ and height $h \,\mathrm{m}$ along their circumferences. The centre of mass, G, of the object is $d \,\mathrm{m}$ from the vertex of the cone on the axis of symmetry of the object. The object rests in equilibrium on a horizontal plane, with the curved surface of the cone in contact with the plane (see diagram). The object is on the point of toppling.

(i)	Show that $d = h +$	$\frac{0.04}{h}$.		[3]

© UCLES 2016 9709/05/SP/17

and of weight W N. Given also that $h = 0.8$, find W .	[
	••••••
	•••••

7

mod is re	article P of mass M kg is attached to one end of a light elastic string of natural legulus of elasticity 12.5 N. The other end of the string is attached to a fixed point leased from rest at A and falls vertically until it comes to instantaneous rest at the test speed of P during its descent is $4.4 \mathrm{m s^{-1}}$ when the extension of the string is A	A. The partic ne point B . The
(i)	Show that $e = 0.64M$.	[2
(ii)	Find a second equation in e and M , and hence find M .	[
		••••••

© UCLES 2016 9709/05/SP/17

(iii)	Calculate the distance AB. [3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/05/SP/17