

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/03

Paper 3 Pure Mathematics 3

For examination from 2020

SPECIMEN PAPER

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

© UCLES 2017 [Turn over

BLANK PAGE

		 	 •••••	
		 	 	•••••
		 	 	•••••
		 	 	•••••
•••••	•••••	 •••••	 •••••	
•••••		 	 •••••	•••••
		 •••••	 •••••	•••••
		 	 	•••••

	Expand $(1+3x)^{-\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^2 , simpli coefficients.	
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		••••••
		• • • • • • • • • • • • • • • • • • • •
(b)	State the set of values of x for which the expansion is valid.	
(b)	State the set of values of x for which the expansion is valid.	
(b)	State the set of values of x for which the expansion is valid.	
(b)		
(b)		

[1]

3	(a)	Sketch the	graph of $y =$	2x - 3	I.
_	···	~ 1100011 0110	D-00011		ı

(b)	Solve the inequality $3x - 1 > 2x - 3 $.	[3]

4	The par	ametric	equations	of a	curve	are
	I IIC pui	unitual	equations	OI u	cuive	u

$$x = e^{2t-3}, y = 4 \ln t,$$

where t > 0. When t = a the gradient of the curve is 2.

Show that <i>a</i> satisfies the equation $a = \frac{1}{2}(3 - \ln a)$.	[4

(b)	Verify by calculation that this equation has a root between 1 and 2.	[2]
(c)	Use the iterative formula $a_{n+1} = \frac{1}{2}(3 - \ln a_n)$ to calculate a correct to 2 decimal places, showing	
	result of each iteration to 4 decimal places.	[3]
		,
		••••

		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
		•••••
(b)	Show that $\int_{0}^{\sqrt{3}} x \tan^{-1} x dx = \frac{2}{3} \pi - \frac{1}{3} \sqrt{3}$.	
(b)	Show that $\int_0^{\sqrt{3}} x \tan^{-1} x dx = \frac{2}{3} \pi - \frac{1}{2} \sqrt{3}$.	
(b)	Show that $\int_0^{\sqrt{3}} x \tan^{-1} x dx = \frac{2}{3}\pi - \frac{1}{2}\sqrt{3}$.	
(b)		

Find $\frac{u}{v}$ in the form $x + iy$, where x and y are real.	
State the argument of $\frac{u}{v}$.	

In an Argand diagram, with origin O, the points A, B and C represent the complex numbers u, v and u-v respectively.

Show that angle $AOB = \frac{1}{4}\pi$ radians.	
Show that angle $AOB = \frac{1}{4}\pi$ radians.	
Show that angle $AOB = \frac{1}{4}\pi$ radians.	
Show that angle $AOB = \frac{1}{4}\pi$ radians.	
Show that angle $AOB = \frac{1}{4}\pi$ radians.	
Show that angle $AOB = \frac{1}{4}\pi$ radians.	

$R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of R correct to 4 significant figures and the value correct to 2 decimal places.

(h)	Hence	solve	the	equation
		, 1101100	30110	uiv	cquation

$COS(x + 43) I = V \angle SIII x = 2$	$\cos(x + 45^\circ)$) — √	$\sqrt{2}$	$\sin x$	=	2.
---------------------------------------	----------------------	-------	------------	----------	---	----

for $0^{\circ} < x < 360^{\circ}$.	[4]

In the diagram, OABC is a pyramid in which OA = 2 units, OB = 4 units and OC = 2 units. The edge OC is vertical, the base OAB is horizontal and angle $AOB = 90^{\circ}$. Unit vectors **i**, **j** and **k** are parallel to OA, OB and OC respectively. The midpoints of AB and BC are M and N respectively.

Express the vectors \overrightarrow{ON} and \overrightarrow{CM} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	

	Calculate the angle between the directions of ON and CM .	[
		•••••
		•••••
		••••••
e)	Show that the length of the perpendicular from M to ON is $\frac{3}{5}\sqrt{5}$.	[

9

The diagram shows the curve $y = \sin^2 2x \cos x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

Find the x -coordinate of M .		

<i>x</i> -	axis.
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	

10 In a chemical reaction, a compound X is formed from two compounds Y and Z.

The masses in grams of X, Y and Z present at time t seconds after the start of the reaction are x, 10 - x and 20 - x respectively. At any time the rate of formation of X is proportional to the product of the masses of Y and Z present at the time. When t = 0, x = 0 and $\frac{dx}{dt} = 2$.

(a) Show that x and t satisfy the differential equation

	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.01(10 - x)(20 - x).$	[1]
))	Solve this differential equation and obtain an expression for x in terms of t .	[9]

State what happens to the value of x when t becomes large. [1]

(c)

Additional page

If you use the must be clearly	following lined p shown.	age to complet	e the answer(s	s) to any quest	ion(s), the ques	stion number(s)
•••••						
		•••••	•••••			•••••
•••••	•••••		••••••		•••••	
•••••			•••••		•••••	
•••••			•••••		•••••	
		•••••	•••••		•••••	•••••
•••••	•••••					

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.