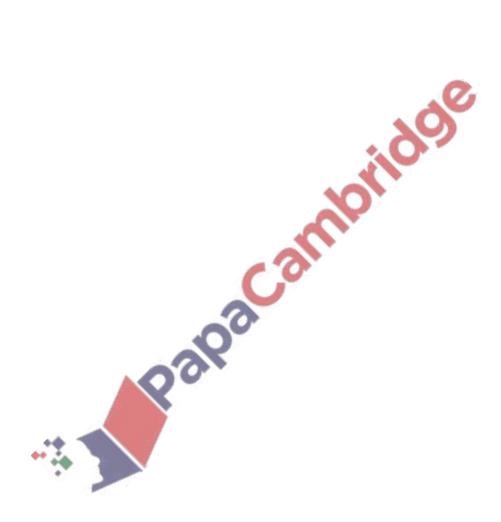
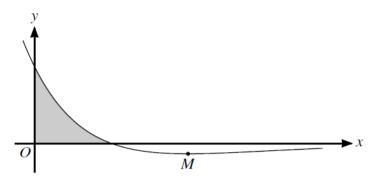
<u>Differentiation – 2020 A2</u>

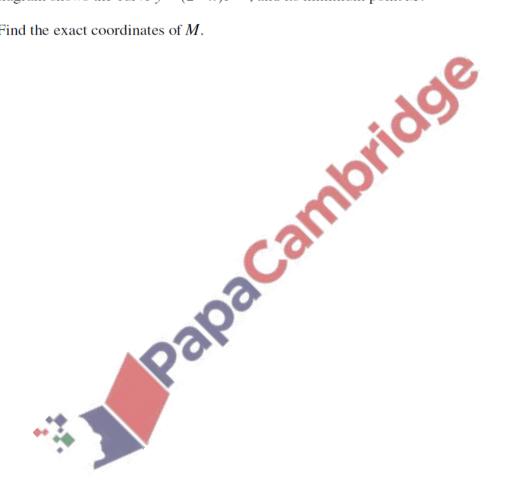

1. Nov/2020/Paper 9709/31/No.3

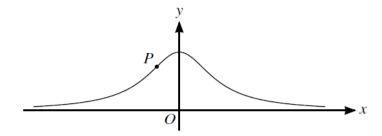
The parametric equations of a curve are


$$x = 3 - \cos 2\theta$$
, $y = 2\theta + \sin 2\theta$,

for
$$0 < \theta < \frac{1}{2}\pi$$
.

Show that
$$\frac{dy}{dx} = \cot \theta$$
. [5]


Nov/2020/Paper_9709/31/No.10a


The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point M.

(a) Find the exact coordinates of M.

[5]

Nov/2020/Paper_9709/32/No.5

The diagram shows the curve with parametric equations

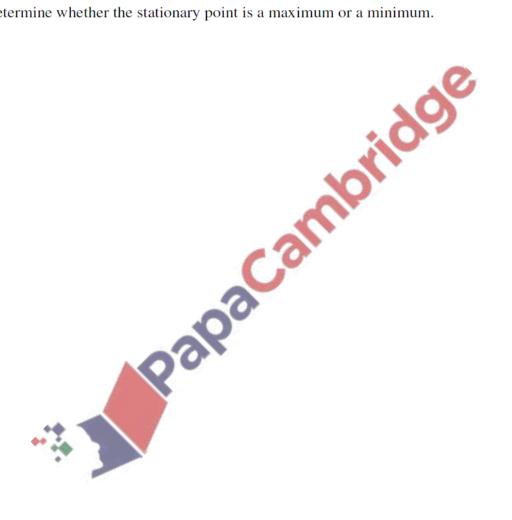
$$x = \tan \theta$$
, $y = \cos^2 \theta$,

for
$$-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$$
.

(a) Show that the gradient of the curve at the point with parameter θ is $-2\sin\theta\cos^3\theta$. [3]

The gradient of the curve has its maximum value at the point P.

(b) Find the exact value of the x-coordinate of P.

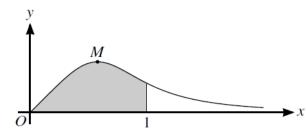

June/2020/Paper_9709/31/No.4

The curve with equation $y = e^{2x}(\sin x + 3\cos x)$ has a stationary point in the interval $0 \le x \le \pi$.

(a) Find the x-coordinate of this point, giving your answer correct to 2 decimal places. [4]

(b) Determine whether the stationary point is a maximum or a minimum.

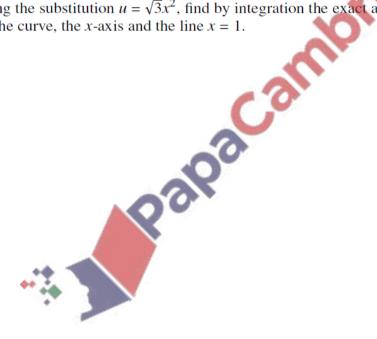
[2]


5. June/2020/Paper_9709/32/No.4

A curve has equation $y = \cos x \sin 2x$.

Find the *x*-coordinate of the stationary point in the interval $0 < x < \frac{1}{2}\pi$, giving your answer correct to 3 significant figures. [6]

6. June/2020/Paper_9709/32/No.6



The diagram shows the curve $y = \frac{x}{1 + 3x^4}$, for $x \ge 0$, and its maximum point M.

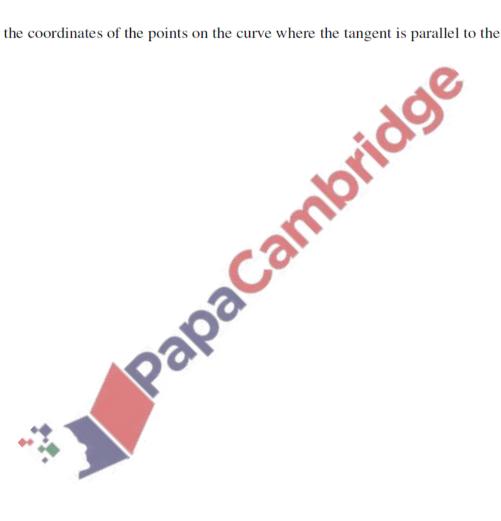
(a) Find the x-coordinate of M, giving your answer correct to 3 decimal places.

(b) Using the substitution $u = \sqrt{3}x^2$, find by integration the exact area of the shaded region bounded by the curve, the x-axis and the line x = 1. [5]

7. June/2020/Paper_9709/33/No.4

The equation of a curve is $y = x \tan^{-1}(\frac{1}{2}x)$.

(a) Find $\frac{dy}{dx}$. [3]


Palpa Caltillation (A) (b) The tangent to the curve at the point where x = 2 meets the y-axis at the point with coordinates (0, p).

Find p. [3] March/2020/Paper_9709/32/No.7

The equation of a curve is $x^3 + 3xy^2 - y^3 = 5$.

(a) Show that $\frac{dy}{dx} = \frac{x^2 + y^2}{y^2 - 2xy}$. [4]

(b) Find the coordinates of the points on the curve where the tangent is parallel to the y-axis. [5]

