Integration - 2021 A2

1. June/2021/Paper 9709/31/No.4

(a) Prove that
$$\frac{1-\cos 2\theta}{1+\cos 2\theta} \equiv \tan^2 \theta$$
. [2]

(b) Hence find the exact value of
$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \frac{1-\cos 2\theta}{1+\cos 2\theta} d\theta$$
. [4]

2. June/2021/Paper_9709/31/No.9b

The equation of a curve is $y = x^{-\frac{2}{3}} \ln x$ for x > 0. The curve has one stationary point.

(b) Show that
$$\int_{1}^{8} y \, dx = 18 \ln 2 - 9$$
. [5]

3. June/2021/Paper_9709/32/No.4

Using integration by parts, find the exact value of $\int_0^2 \tan^{-1}(\frac{1}{2}x) dx$. [5]

4. June/2021/Paper_9709/32/No.6

(a) Prove that
$$\csc 2\theta - \cot 2\theta = \tan \theta$$
. [3]

(b) Hence show that
$$\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$$
 [4]

June/2021/Paper_9709/33/No.4b

Let
$$f(x) = \frac{15 - 6x}{(1 + 2x)(4 - x)}$$
.

(a) Express f(x) in partial fractions.

(b) Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b} \right)$, where a and b are integers.

[3]

(b) By using integration by parts, show that for all a > 1, $\int_{1}^{a} \frac{\ln x}{x^4} dx < \frac{1}{9}$. [6]

7. March/2021/Paper_9709/32/No.6

Let $f(x) = \frac{5a}{(2x-a)(3a-x)}$, where a is a positive constant.

(a) Express f(x) in partial fractions. [3]

(b) Hence show that $\int_{a}^{2a} f(x) dx = \ln 6$. [4]

March/2021/Paper_9709/32/No.10

The diagram shows the curve $y = \sin 2x \cos^2 x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

(a) Using the substitution $u = \sin x$, find the exact area of the region bounded by the curve and the Palpa Cambridge x-axis. [5]

(b) Find the exact x-coordinate of M.

[6]