<u>Trigonometry – 2021 A2</u>

1. June/2021/Paper_9709/31/No.3

(a) Given that
$$\cos(x - 30^\circ) = 2\sin(x + 30^\circ)$$
, show that $\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$. [4]

(b) Hence solve the equation

$$\cos(x - 30^\circ) = 2\sin(x + 30^\circ)$$

Palpa Cambridge for $0^{\circ} < x < 360^{\circ}$. [2]

(a) Prove that
$$\frac{1 - \cos 2\theta}{1 + \cos 2\theta} = \tan^2 \theta$$
.

[2]

(a) Prove that $\csc 2\theta - \cot 2\theta = \tan \theta$.

Papacamoridoe

June/2021/Paper_9709/33/No.5

(a) By first expanding $\tan(2\theta + 2\theta)$, show that the equation $\tan 4\theta = \frac{1}{2} \tan \theta$ may be expressed as $\tan^4 \theta + 2 \tan^2 \theta - 7 = 0$. [4]

(b) Hence solve the equation $\tan 4\theta = \frac{1}{2} \tan \theta$, for $0^{\circ} < \theta < 180^{\circ}$. [3]

5. March/2021/Paper_9709/32/No.3

By first expressing the equation $\tan(x + 45^\circ) = 2 \cot x + 1$ as a quadratic equation in $\tan x$, solve the equation for $0^\circ < x < 180^\circ$. [6]

6. March/2021/Paper_9709/32/No.5

(a) Express $\sqrt{7} \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. [3]

(b) Hence solve the equation $\sqrt{7} \sin 2\theta + 2 \cos 2\theta = 1$, for $0^{\circ} < \theta < 180^{\circ}$. [5]

