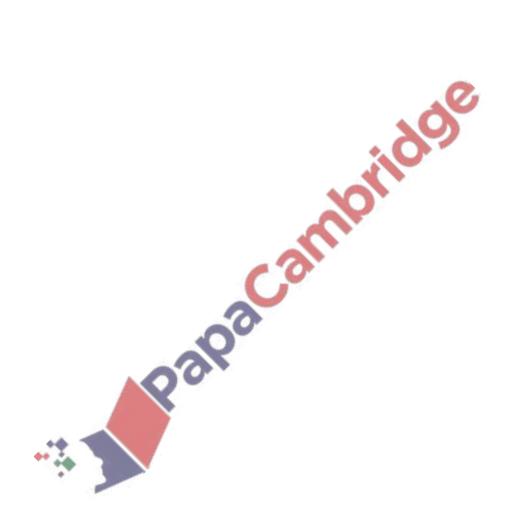

Continuous Random Variables – 2021 A2

1. June/2021/Paper_9709/61/No.3

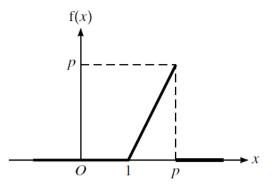
The graph of the probability density function of a random variable X is symmetrical about the line x = 4.

Given that
$$P(X < 5) = \frac{20}{27}$$
, find $P(3 < X < 5)$. [2]

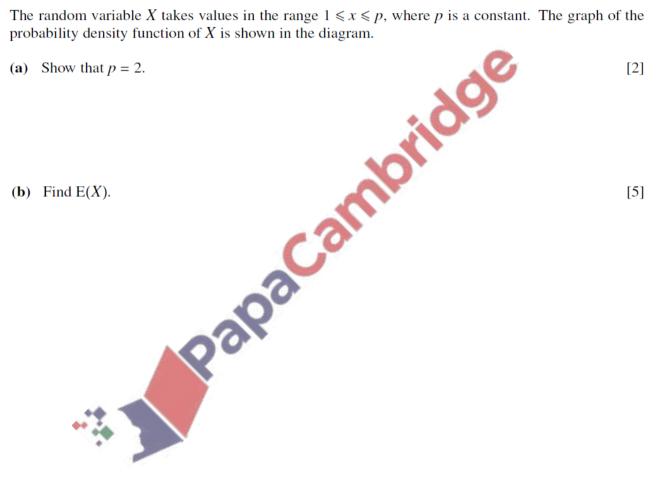

2. June/2021/Paper_9709/61/No.6

The probability density function, f, of a random variable X is given by

$$f(x) = \begin{cases} k(6x - x^2) & 0 \le x \le 6, \\ 0 & \text{otherwise,} \end{cases}$$


where k is a constant.

State the value of E(X) and show that $Var(X) = \frac{9}{5}$.



[6]

June/2021/Paper_9709/62/No.3 3.

The random variable *X* takes values in the range $1 \le x \le p$, where *p* is a constant. The graph of the probability density function of X is shown in the diagram.

3

June/2021/Paper_9709/63/No.6 4.

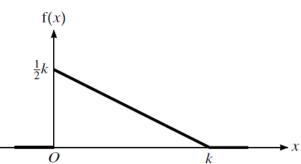
Alethia models the length of time, in minutes, by which her train is late on any day by the random variable X with probability density function given by

$$f(x) = \begin{cases} \frac{3}{8000} (x - 20)^2 & 0 \le x \le 20, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Find the probability that the train is more than 10 minutes late on each of two randomly chosen days. [4]

(**b**) Find E(X).

(c) The median of X is denoted by m.


acambrida Show that *m* satisfies the equation $(m - 20)^3 = -4000$, and hence find *m* correct to 3 significant figures. [4]

[1]

[4]

5. March/2021/Paper_9709/62/No.2

The diagram shows the graph of the probability density function, f, of a random variable X.

(a) Find the value of the constant k.

- (b) Using this value of k, find f(x) for $0 \le x \le k$ and hence find E(X).
- (c) Find the value of p such that P(p < X < 1) = 0.25.

[4]

[3]

[2]