
<u>Differentiation – 2021 A2 Nov</u>

1. Nov/2021/Paper_9709/21/No.5

The diagram shows the curve with parametric equations

$$x = \ln(2t + 3),$$
 $y = \frac{2t - 3}{2t + 3}$

The curve crosses the y-axis at the point A and the x-axis at the point B.

(a)	Show that $\frac{dy}{dx} = \frac{6}{2t+3}$.	[4]

(b)	Find the gradient of the curve at <i>A</i> .	[2]
	. 29	
	70,	
(c)	Find the gradient of the curve at <i>B</i> .	[2]
	A00*	
	•••	

$y = 5x - 2\tan 2x$
has exactly one stationary point in the interval $0 \le x < \frac{1}{4}\pi$.
Find the coordinates of this stationary point, giving each coordinate correct to 3 significant figures. [6]

2. Nov/2021/Paper_9709/22/No.3 The curve with equation

Find the exact value of the gradient of the normal to the curve at the point $(\sqrt{2}, \frac{1}{12}\pi)$.	[6]
O ₄	
60	

3. Nov/2021/Paper_9709/22/No.5 A curve has equation $x^2 + 4x \cos 3y = 6$.