Trigonometry- 2021 A2 Nov P3

1.	Nov/2021/Paper_9709/31/No.2						
		Express $5 \sin x - 3 \cos x$ in the form $R \sin(x - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2}\pi$. Give the exact value of <i>R</i> and give α correct to 2 decimal places. [3]					
	(b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. [2]					

(a) Show that the equation

$\cot 2\theta + \cot \theta = 2$		
	can be expressed as a quadratic equation in $\tan \theta$.	[3]
	Hence solve the equation $\cot 2\theta + \cot \theta = 2$, for $0 < \theta < \pi$, giving your answers correct to 3 dec places.	imal [3]

- **3.** Nov/2021/Paper_9709/32/No.8 (a) By first expanding $(\cos^2 \theta + \sin^2 \theta)^2$, show that

$$\cos^4\theta + \sin^4\theta \equiv 1 - \frac{1}{2}\sin^2 2\theta.$$
 [3]

(**b**) He

Hence solve the equation
$$\cos^4 \theta + \sin^4 \theta = \frac{5}{9}.$$
[4]

•••••	 	 	

Nov/2021/Paper_9709/33/No.5 Solve the equation $\sin \theta = 3 \cos 2\theta + 2$, for $0^\circ \le \theta \le 360$)°. [5

- 5. Nov/2021/Paper_9709/33/No.6
 - (a) By first expanding $\cos(x 60^\circ)$, show that the expression

 $2\cos(x-60^\circ) + \cos x$

can be written in the form $R\cos(x - \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$. Give the exact value of R and the value of α correct to 2 decimal places. [5]

(b)	Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ takes its least possible value. [2]