<u>Vectors – 2021 A2 Nov P3</u>

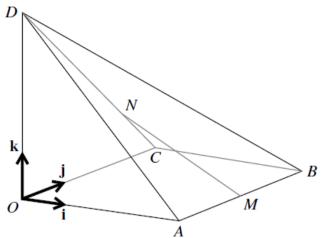
1	Nov	/2021	/Paper	9709	/21	/N/o 0
Ι.	INOV	/ ZUZI,	/Paper	9709	/ 3 I,	/ NO.9

Two lines l and m have equations $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k} + s(4\mathbf{i} - \mathbf{j} + 3\mathbf{k})$ and $\mathbf{r} = \mathbf{i} - \mathbf{j} - 2\mathbf{k} + t(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$ respectively.

(a)	Show that l and m are perpendicular.	[2]
(b .)	Chew that I and an intersect and state the position western of the point of intersection	F.5.1
(D)	Show that l and m intersect and state the position vector of the point of intersection.	[5]

(c)	Show that the length of the perpendicular from the origin to the line m is $\frac{1}{3}\sqrt{5}$. [4]
	60
	20
	- ~ ~
	AQ 0

2.	Nov/2021/Paper_	9709/32/No.10
	,,	_0 , 00 , 0 _ , 0 0


With respect to the origin O, the position vectors of the points A and B are given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.

(a)	Find a vector equation for the line l through A and B .	3]
		•••
		•••
		•••
		•••
(b)	The point C lies on l and is such that $\overrightarrow{AC} = 3\overrightarrow{AB}$.	
	Find the position vector of C .	2

(c)	Find the possible position vectors of the point <i>P</i> on <i>l</i> such that $OP = \sqrt{14}$.	[5]
	0.	
	6,9	
	•	

3. Nov/2021/Paper_9709/33/No.8

(a)

In the diagram, OABCD is a pyramid with vertex D. The horizontal base OABC is a square of side 4 units. The edge OD is vertical and OD = 4 units. The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively.

The midpoint of AB is M and the point N on CD is such that DN = 3NC.

Find a vector equation for the line through M and N	[5]
60	
~~~	

Show that the length of the perpendicular from $O$ to $MN$ is $\frac{1}{3}\sqrt{82}$ .	
40	