<u>Sampling and Estimation – 2021 A2 Nov S2</u>

1. Nov/2021/Paper_9709/61/No.1

It is known that the height H , in metres, of trees of a certain kind has the distribution N(12.5, 10.24). A scientist takes a random sample of 25 trees of this kind and finds the sample mean, \overline{H} , of the heights.		
(a)	State the distribution of \overline{H} , giving the values of any parameters.	[2]
(b)	Find P($12 < \overline{H} < 13$).	[3]
	A00	

said that they owned a car. From this result an approximate $\alpha\%$ confidence interval for the proportion of all students at the college who own a car was calculated. The width of this interval was found to be 0.162.
Calculate the value of α correct to 2 significant figures. [5]
Co
100

A random sample of 75 students at a large college was selected for a survey. 15 of these students

2. Nov/2021/Paper_9709/61/No.3

3.	Nov/2021/Paper_	9709/61/No.6
	,,	_0 , 00 , 0 = , 0 . 0

The random variable T denotes the time, in seconds, for 100 m races run by Tania. T is normally distributed with mean μ and variance σ^2 . A random sample of 40 races run by Tania gave the following results.

$$n = 40$$
 $\Sigma t = 560$ $\Sigma t^2 = 7850$

(a)	Calculate unbiased estimates of μ and σ^2 .	[3]
	<i></i>	
	0.0	

The random variable S denotes the time, in seconds, for 100 m races run by Suki. S has the independent distribution N(14.2, 0.3). (b) Using your answers to part (a), find the probability that, in a randomly chosen 100 m race, Suki's time will be at least 0.1 s more than Tania's time. [5]

4. Nov/2021/Paper_9709/62/No.1

The mass, in kilograms, of a block of cheese sold in a supermarket is denoted by the random variable M. The masses of a random sample of 40 blocks are summarised as follows.

n = 40 $\Sigma m = 20.50$ $\Sigma m^2 = 10.7280$

(a)	Calculate unbiased estimates of the population mean and variance of M .	[3]
	CO	
(b)	The price, P , of a block of cheese of mass M kg is found using the formula $P = 11M + 100$	0.50.
	Find estimates of the population mean and variance of P .	[3]

(a)	Andy suggests that they go to the music building during the lunch hour and choose six students at random from the students who are there.
	Give a reason why this method is unsatisfactory. [1]
(b)	Jessica decides to use another method. She numbers all the students in the college from 1 to 256.
(-)	Then she uses her calculator and generates the following random numbers.
	204393 162007 204028 587119 207395
	From these numbers, she obtains six student numbers. The first three of her student numbers are 204, 162 and 7.
	Continue Jessica's method to obtain the next three student numbers. [2]
	•

5. Nov/2021/Paper_9709/62/No.2 Andy and Jessica are doing a survey about musical preferences. They plan to choose a representative sample of six students from the 256 students at their college.

The probability that a certain spinner lands on red on any spin is p . The spinner is spun 140 times and it lands on red 35 times.	
(a)	Find an approximate 96% confidence interval for p . [3]
	. 29
	-200
	In three further experiments, Jack finds a 90% confidence interval, a 95% confidence interval and p 0% confidence interval for p 1.
(b)	Find the probability that exactly two of these confidence intervals contain the true value of p . [3]

6. Nov/2021/Paper_9709/62/No.3