<u>Differentiation – 2022 A2 June</u>

1.	March/2022/Paper_9709/22/No.2 A curve has equation $y = 7 + 4 \ln(2x + 5)$.					
	Find the equation of the tangent to the curve at the point $(-2, 7)$, giving your answer in the for $y = mx + c$.					
	•					
	100					

(b)	Hence find the value of x when $y = 36$. Give your answer correct to 3 significant figures. [2]
	Palpacalities

2.	March/2022/Paper_	9709/22/No.5(a)	
٠.	IVIALCHI ZUZZI LAPCI	_5705/22/110.5(a)	

(a)

iven that $y = \tan^2 x$, show that $\frac{dy}{dx} = 2 \tan x + 2 \tan^3 x$. [2]	2]
: 39	
Najb.	

(a)	Show that $\frac{dy}{dx} = \frac{2e^{2x}y}{e^y - e^{2x}}$. [3]
	499
(b)	Show that the curve has no stationary points. [2

3. March/2022/Paper_9709/22/No.7 A curve has equation $e^{2x}y - e^y = 100$.

It is required to find the x-coordinate of P, the point on the curve at which the tangent is parallel to the y-axis.

	$v = \ln 10 - \ln(2v - 1)$
	$x = \ln 10 - \frac{1}{2} \ln(2x - 1). $ [4]
(d)	Use an iterative formula, based on the equation in part (c) , to find the x-coordinate of P correct to
	3 significant figures. Use an initial value of 2 and give the result of each iteration to 5 significant
	figures. [3]

Find the equation of the normal to the curve at the point $(4, 2)$, giving your answer in the for $ax + by + c = 0$ where a , b and c are integers.	orm [7]
	•••••
	•••••
	•••••
	•••••
	•••••

4. June/2022/Paper_9709/21/No.4 A curve has equation $x^2y + 2y^3 = 48$.

5.	June	/2022/Paper_9709/21/No.6	
	A cı	arve has equation $y = \frac{9e^{2x} + 16}{e^x - 1}$.	
	(a)	Show that the x -coordinate of any stationary point on the curve satisfies the equation	
		$e^x(3e^x - 8)(3e^x + 2) = 0.$	[4]
			••••
			••••
			••••

			••••

		•••••	•••••	
	,			,
			10	
			40	
		•		
		_		
		10		
	4	0		
•••••	30			
**				

6.	June/2022/Paper_9709/22/No.1					
	Given that $y = \frac{\ln x}{x^2}$, find the exact value of $\frac{dy}{dx}$ when $x = e$.	[3]				
	409					
		,				
		,				

Find the exact gradient of the curve at the point $(0, \frac{1}{6}\pi)$.	[5]
	•••••
CO .	

7. June/2022/Paper_9709/22/No.3 A curve has equation $e^{2x} \cos 2y + \sin y = 1$.