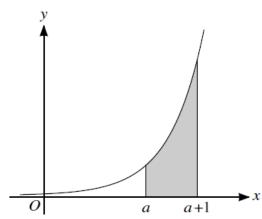

<u>Integration – 2022 A2 June</u>

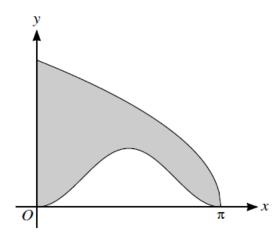
1. March/2022/Paper_9709/22/No.5(b)

(b)	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} (\tan x + \tan^2 x + \tan^3 x) dx$.	[6]
	Pale a	


2. June/2022/Paper_9709/21/No.3

The diagram shows the curve with equation $y = 3 \sin x - 3 \sin 2x$ for $0 \le x \le \pi$. The curve meets the *x*-axis at the origin and at the points with *x*-coordinates *a* and π .

(a)	Find the exact value of <i>a</i> .	[3]
		<i>!</i>
	00	
	100	
(b)	Find the area of the shaded region.	[4]


3. June/2022/Paper_9709/22/No.6(a)

The diagram shows the curve $y = 3e^{2x-1}$. The shaded region is bounded by the curve and the lines x = a, x = a + 1 and y = 0, where a is a constant. It is given that the area of the shaded region is 120 square units.

(a)	Show that $a = \frac{1}{2} \ln(80 + e^{2a-1}) - \frac{1}{2}$.	[5]
	C C C C C C C C C C C C C C C C C C C	
	~~	
	100	

4. June/2022/Paper_9709/22/No.7

The diagram shows the curves $y = \sqrt{2\pi - 2x}$ and $y = \sin^2 x$ for $0 \le x \le \pi$. The shaded region is bounded by the two curves and the line x = 0.

Find the exact area of the shaded region.	[8]
	10
CP"	
200	
100	
