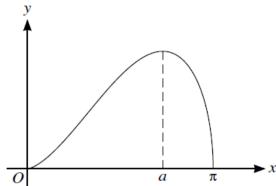

Numerical Solutions of Equations – 2022 A2 June

- 1. March/2022/Paper 9709/32/No.7
 - (a) By sketching a suitable pair of graphs, show that the equation $4 x^2 = \sec \frac{1}{2}x$ has exactly one root in the interval $0 \le x < \pi$.



(c) Use the iterative formula $x_{n+1} = \sqrt{4 - \sec \frac{1}{2}x_n}$ to determine the root correct to 2 decimal places.

[3]

Give the result of each iteration to 4 decimal places.

2. June/2022/Paper_9709/31/No.10

The curve $y = x\sqrt{\sin x}$ has one stationary point in the interval $0 < x < \pi$, where x = a (see diagram).

(a)	Show that $\tan a = -\frac{1}{2}a$.	[4]
	409	
	100	

,D)	verify by calculation that a lies between 2 and 2.5.
(c)	Show that if a sequence of values in the interval $0 < x < \pi$ given by the iterative formula $x_{n+1} = \pi - \tan^{-1}(\frac{1}{2}x_n)$ converges, then it converges to a , the root of the equation in part (a). [2]
(d)	Use the iterative formula given in part (c) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

3.	June/2022/Paper	9709/32/No.5
•	Julie, 2022, Lapel	_37037327110.3

(a) By sketching a suitable pair of graphs, show that the equation $\ln x = 3x - x^2$ has one real root.

(b) Verify by calculation that the root lies between 2 and 2.8.

[2]

(c) Use the iterative formula $x_{n+1} = \sqrt{3x_n - \ln x_n}$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

4.	June	/2022/Paper_9709/33/No.10
	The	constant a is such that $\int_{1}^{a} x^{2} \ln x dx = 4$.
	(a)	Show that $a = \left(\frac{35}{3 \ln a - 1}\right)^{\frac{1}{3}}$. [5]
		200

•		
•		
•		• • • • • • • • • • • • • • • • • • • •
•		•••••
•		
•		
	Use an iterative formula based on the equation in part (a) to determine a correct to	
I		
I	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de
	Use an iterative formula based on the equation in part (a) to determine a correct to laces. Give the result of each iteration to 4 decimal places.	2 de