Partial Fractions and Binomial Expansions – 2022 A2 June

Solve the equation $\cos(\theta - 60^\circ) = 3\sin\theta$, for $0^\circ \le \theta \le 360^\circ$.	
<u>~</u>	
<u>(* 9</u>)	

2. June/2022/Paper_9709/32/No.8(a)

At time *t* days after the start of observations, the number of insects in a population is *N*. The variation in the number of insects is modelled by a differential equation of the form $\frac{dN}{dt} = kN^{\frac{3}{2}}\cos 0.02t$, where *k* is a constant and *N* is a continuous variable. It is given that when t = 0, N = 100.

(a) Solve the differential equation, obtaining a relation between *N*, *k* and *t*. [5]

~~~

3.	June	/2022/Paper_9709/33/No.7	
	Let	$f(x) = \frac{5x^2 + 8x - 3}{(x - 2)(2x^2 + 3)}.$	
	(a)	Express $f(x)$ in partial fractions.	[5]
			•••••
			•••••
		Q ^c	
			•••••
			••••
			•••••

(b)	Hence obtain the expansion of $f(x)$ in ascending powers of $x$ , up to and including the term in $x^2$ . [5]
	<u>~</u>
	<u> </u>