The Poisson distribution – 2022 A2 June

- 1. March/2022/Paper_9709/62/No.7
 - (a) Two ponds, *A* and *B*, each contain a large number of fish. It is known that 2.4% of fish in pond *A* are carp and 1.8% of fish in pond *B* are carp. Random samples of 50 fish from pond *A* and 60 fish from pond *B* are selected.

Use appropriate Poisson approximations to find the following probabilities.

(i) The samples contain at least 2 carp from pond *A* and at least 2 carp from pond *B*. [3]

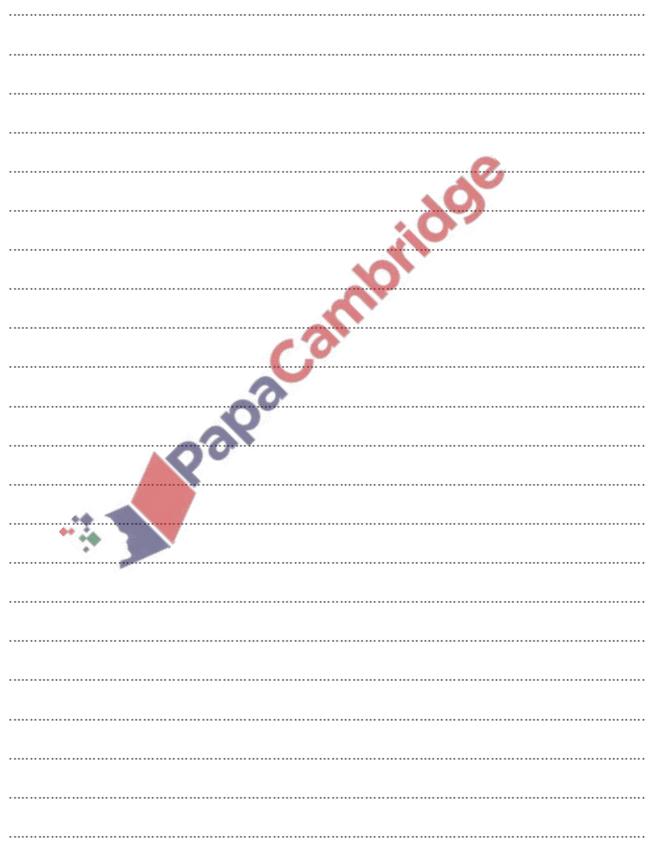
	~?
	20
(ii)	The samples contain at least 4 carp altogether. [3]

(b) The random variables X and Y have the distributions $Po(\lambda)$ and $Po(\mu)$ respectively. It is given that

[4]

- $P(X = 0) = [P(Y = 0)]^2$,
- $P(X = 2) = k[P(Y = 1)]^2$, where k is a non-zero constant.

Find the value of *k*.


·····
~~~

.....

(a)	Find the probability that more than 4 cars arrive during a 20-minute period.	[3]
(b)	The environment of the distribution to find the optimized bit to the table much an effective that a	
	Use an approximating distribution to find the probability that the number of cars that a a 12-hour period is between 150 and 160 inclusive.	
	a 12-hour period is between 150 and 160 inclusive.	[4]
	a 12-hour period is between 150 and 160 inclusive.	[4]
	a 12-hour period is between 150 and 160 inclusive.	[4]
	a 12-hour period is between 150 and 160 inclusive.	[4]
	a 12-hour period is between 150 and 160 inclusive.	[4]
~ /	a 12-hour period is between 150 and 160 inclusive.	[4]
~ *	a 12-hour period is between 150 and 160 inclusive.	[4]
~ *	a 12-hour period is between 150 and 160 inclusive.	[4]
~ *	a 12-hour period is between 150 and 160 inclusive.	[4]
	a 12-hour period is between 150 and 160 inclusive.	[4]
	a 12-hour period is between 150 and 160 inclusive.	[4]

Independently of cars, trucks arrive at the fuel station at random and at a constant average rate of 3.6 per 15-minute period.

(c) Find the probability that the total number of cars and trucks arriving at the fuel station during a 10-minute period is more than 3 and less than 7. [3]



3.	June/2022/Paper_9709/62/No.7 <i>X</i> is a random variable with distribution Po(2.90). A random sample of 100 values of <i>X</i> is taken.		
	Find the probability that the sample mean is less than 2.88.	[5]	
	Ś		
	<u>C</u>		

## **4.** June/2022/Paper_9709/63/No.5

The number of clients who arrive at an information desk has a Poisson distribution with mean 2.2 per 5-minute period.

(a) Find the probability that, in a randomly chosen 15-minute period, exactly 6 clients arrive at the desk.
[3]

	·····
	<u>~</u> ?
(b)	If more than 4 clients arrive during a 5-minute period, they cannot all be served.
(b)	If more than 4 clients arrive during a 5-minute period, they cannot all be served. Find the probability that, during a randomly chosen 5-minute period, not all the clients who arrive at the desk can be served. [2]
(b)	Find the probability that, during a randomly chosen 5-minute period, not all the clients who
(b)	Find the probability that, during a randomly chosen 5-minute period, not all the clients who
(b)	Find the probability that, during a randomly chosen 5-minute period, not all the clients who
<b>(b)</b>	Find the probability that, during a randomly chosen 5-minute period, not all the clients who
<b>(b)</b>	Find the probability that, during a randomly chosen 5-minute period, not all the clients who
<b>(b)</b>	Find the probability that, during a randomly chosen 5-minute period, not all the clients who
<b>(b)</b>	Find the probability that, during a randomly chosen 5-minute period, not all the clients who

1-hour period, fewer than 20 clients arrive at the desk.	[4]
<u></u>	
NO.	
~~~	

 $(c) \ \ \, Use a suitable approximating distribution to find the probability that, during a randomly chosen$