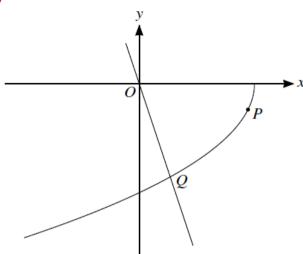
<u>Differentiation – 2022 A2 Nov Math</u>

1.	Nov/2022/Paper_9709_21/No.5	
	A curve has equation $4e^{2x}y + y^2 = 21$.	
	Find the gradient of the curve at the point $(0, -7)$.	[5]
	. 29	
	10.0 .	

Nov/2022/Paper_9709_22/No.5	2.	Nov/2022/Paper	r 9709 22/No.5
---	----	----------------	----------------

The curve with equation $y = x \ln(4x + 1) - 3x$ has one stationary point *P*.


(a) Show that the x-coordinate of P satisfies the equation

$$x = \frac{2x + 0.75}{\ln(4x + 1)} - 0.25.$$
 [4]

. 0
4.0
**

(b)	Show by calculation that the x -coordinate of P lies between 1.8 and 1.9.	
	Co	
(-)		- C D
(c)	Use an iterative formula, based on the equation in part (a), to find the <i>x</i> -coordinate of to 3 significant figures. Give the result of each iteration to 5 significant figures.	[3
		,

3. Nov/2022/Paper_9709_22/No.7

The diagram shows the curve with parametric equations

$$x = 3\cos 2\theta$$
, $y = 4\sin \theta$,

for $\pi \le \theta \le \frac{3}{2}\pi$. Points *P* and *Q* lie on the curve. The gradient of the curve at *P* is 2. The straight line 3x + y = 0 meets the curve at *Q*.

(a)	Find the value of θ at P , giving your answer correct to 3 significant figures.	[5]
	Co	
	.00	

Find the gradient of the curve at Q , giving your answer correct to 3 significant figures.	
<i>O</i> .	