<u>Differential Equations – 2022 A2 Nov Math</u>

1. Nov/2022/Paper_9709_31/No.8

In a certain chemical reaction the amount, x grams, of a substance is increasing. The differential equation satisfied by x and t, the time in seconds since the reaction began, is

$$\frac{\mathrm{d}x}{\mathrm{d}t} = kx\mathrm{e}^{-0.1t},$$

where k is a positive constant. It is given that x = 20 at the start of the reaction.

(a)	Solve the differential equation, obtaining a relation between x , t and k .	[5]

			Q,
			9)
		410	
(b)	Given that $x = 40$ when $t = 1$ large.	10, find the value of k and find the value a	pproached by <i>x</i> as <i>t</i> becomes
(b)	Given that $x = 40$ when $t = 1$ large.	10, find the value of k and find the value a	pproached by <i>x</i> as <i>t</i> becomes
(b)	Given that $x = 40$ when $t = 1$ large.	10, find the value of k and find the value a	pproached by <i>x</i> as <i>t</i> becomes
(b)	large.	10, find the value of k and find the value a	pproached by x as t becomes [3]
(b)	large.	10, find the value of k and find the value a	pproached by x as t becomes [3]
(b)	large.	10, find the value of k and find the value a	pproached by x as t becomes [3]
(b)	large.	10, find the value of k and find the value a	pproached by x as t becomes [3]
(b)	large.	10, find the value of k and find the value a	pproached by x as t becomes [3]
(b)	large.	10, find the value of k and find the value a	pproached by x as t becomes [3]

2	Nov	/2022	/Paner	9709	32/No.7	
۷.	INUV	120221	rapei_	_3703_	_32/190.7	

The variables \bar{x} and $\bar{\theta}$ satisfy the differential equation

$$x\sin^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = \tan^2\theta - 2\cot\theta,$$

for $0 < \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 2 when $\theta = \frac{1}{4}\pi$.

(a) Show that $\frac{d}{d\theta}(\cot^2\theta) = -\frac{2\cot\theta}{\sin^2\theta}$.

(You may assume without proof that the derivative of $\cot \theta$ with respect to θ is $-\csc^2 \theta$.) [1]
. 29
20

(b) Solve the differential equation and find the value of x when $\theta = \frac{1}{6}\pi$. [7]

3.	Nov/2022/Pape	r 9709	33/No.10

A gardener is filling an ornamental pool with water, using a hose that delivers 30 litres of water per minute. Initially the pool is empty. At time t minutes after filling begins the volume of water in the pool is V litres. The pool has a small leak and loses water at a rate of 0.01V litres per minute.

The differential equation satisfied by V and t is of the form $\frac{dV}{dt} = a - bV$.

(a) Write down the values of the constants a and b.

(a)	Write down the values of the constants a and b .	[1]
(b)	Solve the differential equation and find the value of t when $V = 1000$.	[6]
	•••	

		•••••
		• • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		•••••
(c)	Obtain an expression for V in terms of t and hence state what happens to V as t becomes la	rge.
(c)	Obtain an expression for V in terms of t and hence state what happens to V as t becomes la	rge. [2]
(c)	Obtain an expression for V in terms of t and hence state what happens to V as t becomes la	rge. [2]
(c)	Obtain an expression for V in terms of t and hence state what happens to V as t becomes la	rge. [2]
(c)	Obtain an expression for V in terms of t and hence state what happens to V as t becomes la	rge. [2]
(c)	Obtain an expression for V in terms of t and hence state what happens to V as t becomes 1a	rge. [2]
(c)	Obtain an expression for V in terms of t and hence state what happens to V as t becomes la	rge. [2]
(c)		rge. [2
(c)		rge. [2]
(c)		rge. [2]
(c)		rge. [2]