Differentiation - 2022 A2 Nov Math

1. Nov/2022/Paper_9709_31/No.7

The equation of a curve is $y = \frac{x}{\cos^2 x}$, for $0 \le x < \frac{1}{2}\pi$. At the point where x = a, the tangent to the curve has gradient equal to 12.

(a) Show that
$$a = \cos^{-1} \left(\sqrt[3]{\frac{\cos a + 2a \sin a}{12}} \right)$$
. [3]

	. 89
	N N
	<u> </u>
(c)	Use an iterative formula based on the equation in part (a) to determine <i>a</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
	praces. Give the result of each heration to 4 decimal praces. [5]

[2]

2. Nov/2022/Paper_9709_31/No.9(a)

The diagram shows part of the curve $y = (3 - x)e^{-\frac{1}{3}x}$ for $x \ge 0$, and its minimum point *M*.

(a) Find the exact coordinates of *M*. [5]

Nov/2022/Paper_9709_32/No.3 The equation of a curve is $y = \sin x \sin 2x$. The curve has a stationary point in the interval $0 < x < \frac{1}{2}\pi$
Find the <i>x</i> -coordinate of this point, giving your answer correct to 3 significant figures. [6
<u> </u>

.....

4. Nov/2022/Paper_9709_33/No.4

The parametric equations of a curve are

 $x = 2t - \tan t, \qquad y = \ln(\sin 2t),$ for $0 < t < \frac{1}{2}\pi$. Show that $\frac{dy}{dx} = \cot t$. [5]

The	2022/Paper_9709_33/No.8(a) curve with equation $y = \frac{x^3}{e^x - 1}$ has a stationary point at $x = p$, where $p > $	0	
The	e curve with equation $y = \frac{1}{e^x - 1}$ has a stationary point at $x = p$, where $p > 0$.		
(a)	Show that $p = 3(1 - e^{-p})$.		
		•	
		9	
	1		