<u>Trigonometry – 2022 A2 Nov Math</u> | 1. | Nov/2022/Paper_9709_31/No.4 | | |----|---|-----| | | Solve the equation $tan(x + 45^\circ) = 2 \cot x$ for $0^\circ < x < 180^\circ$. | [5] | <u>G</u> | 2. | Nov/ | '2022/Paper_9709_31/No.6 | |----|------|---| | | | Prove the identity $\cos 4\theta + 4\cos 2\theta + 3 \equiv 8\cos^4 \theta$. [4] | 10 | Hence solve the equation $\cos 4\theta + 4\cos 2\theta = 4$ for $0^{\circ} \le \theta \le 180^{\circ}$. | | |--|-------| *O* | ••••• | 3. | Nov | /2022/Paper_9709_32/No.4 | | |----|------------|---|--------------| | | (a) | Express $4\cos x - \sin x$ in the form $R\cos(x + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. State the evalue of R and give α correct to 2 decimal places. | exact
[3] | (b) | Hence solve the equation $4\cos 2x - \sin 2x = 3$ for $0^{\circ} < x < 180^{\circ}$. | [5] | | | | Q'0' | | | | | | | | | | *** | 4. | Nov/2022/Paper_9709_33/No.7 | | | | | | |----|-----------------------------|--|--|--|--|--| | | (a) | Show that the equation $\sqrt{5} \sec x + \tan x = 4$ can be expressed as $R \cos(x + \alpha) = \sqrt{5}$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. [4] | ** | Hence solve the equation $\sqrt{5} \sec 2x + \tan 2x = 4$, for $0^{\circ} < x < 180^{\circ}$. | | |---|---| *** | | | | | | | | | | | | | • | | | | | | | | | |