
<u>Vectors – 2022 A2 Nov Math</u>

(a)

1. Nov/2022/Paper_9709_31/No.11

In the diagram, OABCD is a solid figure in which OA = OB = 4 units and OD = 3 units. The edge OD is vertical, DC is parallel to OB and DC = 1 unit. The base, OAB, is horizontal and angle $AOB = 90^{\circ}$. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OB and OD respectively. The midpoint of AB is M and the point N on BC is such that CN = 2NB.

Express vectors MD and ON in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[4]

(b)	Calculate the angle in degrees between the directions of \overrightarrow{MD} and \overrightarrow{ON} .	[3]
	.0	
(c)	Show that the length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4]
	A008	

Nov/2022/Paper_9709_32/No.6	2022/Paper 9709 32/	/No.6
---	---------------------	-------

Relative to the origin O, the points A, B and C have position vectors given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}.$$

(a)	Using a scalar product, find the cosine of angle BAC.	[4]
	Co	
	100	

b)	Hence find the area of triangle ABC . Give your answer in a simplified exact form.					

Nov/2022/Paper_9709_33/No.9	3.	Nov/2022/	/Paper	9709	33/	/No.9
---	----	-----------	--------	------	-----	-------

With respect to the origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -3 \\ -2 \end{pmatrix}.$$

The midpoint of AC is M and the point N lies on BC, between B and C, and is such that BN = 2NC.

(a)	Find the position vectors of M and N .	[3]
		••••••••••••••••••••••••••••••••••••••
		<u>9</u>
	16.0	
(b)	Find a vector equation for the line through M and N .	[2]
	•••	

			20	
			9	
		10)		
	63			
	. 0			
	0.			
**				