<u>Sampling and Estimation – 2022 A2 Nov Math</u>

1.	Nov/202 The hei	2/Paper_ ights, in	9709_61, metres,	/No.1 of a rand	dom san	nple of 1	0 matur	e trees of	f a certa	in variet	y are givei	n below.
		5.9	6.5	6.7	5.9	6.9	6.0	6.4	6.2	5.8	5.8	
	Find ur variety.		estimates	s of the p	oopulatio	on mean	and var	iance of	the heig	hts of al	l mature tı	rees of this
										0		
									8)		
							0					
					~)						
				A	10	•					•••••	••••••
		••										
			9.00									

2. Nov/2022/Paper_9709_61/No.5 A builders' merchant sells stones of different sizes. (a) The masses of size A stones have standard deviation 6 grams. The mean mass of a random sample of 200 size A stones is 45 grams. Find a 95% confidence interval for the population mean mass of size A stones. [3] (b) The masses of size B stones have standard deviation 11 grams. Using a random sample of size 200, an $\alpha\%$ confidence interval for the population mean mass is found to have width 4 grams. Find α . [4]

3.	Nov/2022/Paper_	9709	62/No.1
	- 1 - 1		

Each of a random sample of 80 adults gave an estimate, h metres, of the height of a particular building. The results were summarised as follows.

n = 80 $\Sigma h = 2048$ $\Sigma h^2 = 52760$

(a)	Calculate unbiased estimates of the population mean and variance.	[3]				
	10					
(b)	Using this sample, the upper boundary of an $\alpha\%$ confidence interval for the population mean is 26.0.					
	Find the value of α .	[4]				
		,				

X is a random variable with distribution B(10, 0.2). A random sample of 160 values of X is taken.			
(a)	Find the approximate distribution of the sample mean, including the values of the parameters. [3]		
(b)	Hence find the probability that the sample mean is less than 1.8. [3]		
	~~		

4. Nov/2022/Paper_9709_62/No.5