<u>The Poisson distribution – 2022 A2 Nov Math</u>

1.		Nov/2022/Paper_9709_61/No.3 Drops of water fall randomly from a leaking tap at a constant average rate of 5.2 per minute.				
	(a)	Find the probability that at least 3 drops fall during a randomly chosen 30-second period. [3]				
	(b)	Use a suitable approximating distribution to find the probability that at least 650 drops fall during a randomly chosen 2-hour period. [4]				

2. Nov/2022/Paper_9709_62/No.3

The diagram shows the graph of the probability density function of a random variable X that takes values between -1 and 3 only. It is given that the graph is symmetrical about the line x = 1. Between x = -1 and x = 3 the graph is a quadratic curve.

The random variable *S* is such that $E(S) = 2 \times E(X)$ and Var(S) = Var(X).

(a) On the grid below, sketch a quadratic graph for the probability density function of S. [1]

The random variable T is such that E(T) = E(X) and $Var(T) = \frac{1}{4}Var(X)$.

(b) On the grid below, sketch a quadratic graph for the probability density function of T. [2]

2

It is now given that

$$f(x) = \begin{cases} \frac{3}{32}(3 + 2x - x^2) & -1 \le x \le 3, \\ 0 & \text{otherwise.} \end{cases}$$

`	Given that $P(1 - a < X < 1 + a) = 0.5$, show that $a^3 - 12a + 8 = 0$.	
•		
•		
I	Hence verify that $0.69 < a < 0.70$.	
•		
•		
•		