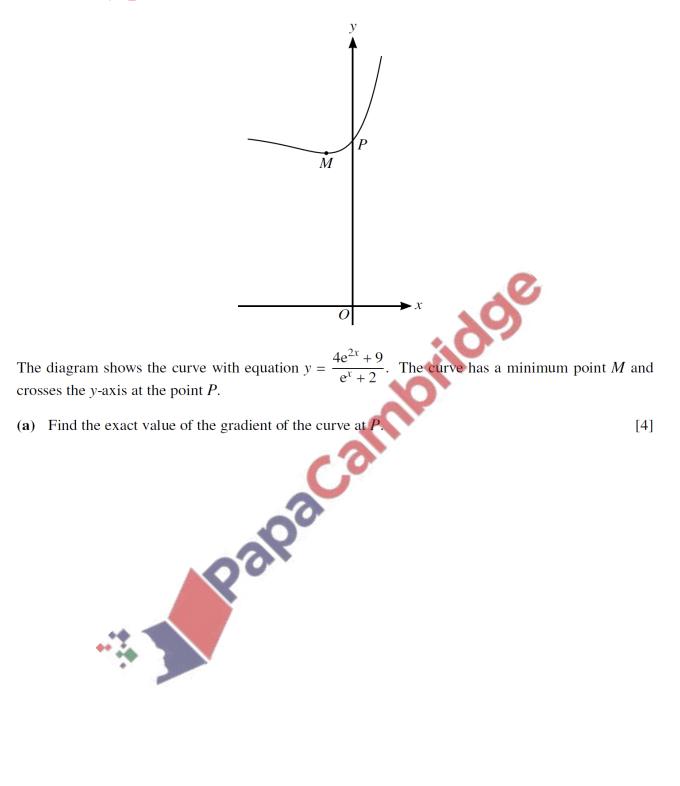
Differentiation and integration-2023 March Cambridge AS & A Level Mathematics

1. March/2023/Paper_9709/22/No.1

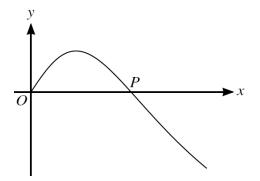
Find the exact value of $\int_{0}^{\frac{1}{2}\pi} 2\tan^2(\frac{1}{2}x) \, dx.$

Papacambridge ••

[4]


2. March/2023/Paper_9709/22/No.5

It is given that $\int_{1}^{a} \left(\frac{4}{1+2x} + \frac{3}{x}\right) dx = \ln 10$, where *a* is a constant greater than 1.


(a) Show that
$$a = \sqrt[3]{90(1+2a)^{-2}}$$
. [5]

(b) Use an iterative formula, based on the equation in (a), to find the value of *a* correct to 3 significant figures. Use an initial value of 1.7 and give the result of each iteration to 5 significant figures.

Papacamonidos

Papacamonidose

The diagram shows the curve with parametric equations

 $x = k \tan t$, $y = 3\sin 2t - 4\sin t,$

ered fraction for $0 < t < \frac{1}{2}\pi$. It is given that k is a positive constant. The curve crosses the x-axis at the point P.

[3]

(a) Find the value of $\cos t$ at P, giving your answer as an exact fraction.

(b) Express $\frac{dy}{dx}$ in terms of k and $\cos t$.

(c) Given that the normal to the curve at *P* has gradient $\frac{9}{10}$, find the value of *k*, giving your answer as an exact fraction. [3]