Differential equations – 2023 Nov CIE Mathematics

1. Nov/2023/Paper_9709/31/No.7

The variables *x* and θ satisfy the differential equation

$$\frac{x}{\tan\theta}\frac{\mathrm{d}x}{\mathrm{d}\theta} = x^2 + 3.$$

[7]

It is given that x = 1 when $\theta = 0$.

Solve the differential equation, obtaining an expression for x^2 in terms of θ .

<u> </u>
<u>~</u> ?
Ŷ

2. Nov/2023/Paper_9709/32/No.11

The variables *x* and *y* satisfy the differential equation

$$x^2\frac{\mathrm{d}y}{\mathrm{d}x} + y^2 + y = 0$$

It is given that x = 1 when y = 1.

(a) Solve the differential equation to obtain an expression for y in terms of x. [8] 44 <u>...</u>..... 4

	~~
	X
	100 N
(b)	State what happens to the value of y when x tends to infinity. Give your answer in an exact form. [1]

3. Nov/2023/Paper_9709/33/No.8

The variables *x* and *y* satisfy the differential equation

$$e^{4x}\frac{\mathrm{d}y}{\mathrm{d}x} = \cos^2 3y.$$

[7]

It is given that y = 0 when x = 2.

Solve the differential equation, obtaining an expression for *y* in terms of *x*.

<u></u>
\sim
69