
## <u>Differentiation – 2023 Nov CIE Mathematics</u>

| 1. | Nov/2  | 023/Pa | ner 97 | na/2  | 1/No.2  |
|----|--------|--------|--------|-------|---------|
| Ι. | INOV/Z | UZ3/Pa | per 97 | U9/ Z | T/ NO.Z |

A curve has equation  $y = 3 \tan \frac{1}{2}x \cos 2x$ . Find the gradient of the curve at the point for which  $x = \frac{1}{3}\pi$ . [5] **2.** Nov/2023/Paper\_9709/22/No.6



The diagram shows the curve with parametric equations

$$x = 3\ln(2t - 3), \qquad y = 4t\ln t.$$

The curve crosses the y-axis at the point A. At the point B, the gradient of the curve is 12.

| Find the exact gradient of the curve at A. | [5] |
|--------------------------------------------|-----|
| 50                                         |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |

|     | $t = \frac{9}{1 + \ln t} + \frac{3}{2}.$                                                                                                                                                          | [2]             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     | $1 + \ln t$ 2                                                                                                                                                                                     |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   | ••••••          |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
| (c) | Use an iterative formula, based on the equation in $(\mathbf{b})$ , to find the value of $t$ at $B$ , givi answer correct to 3 significant figures. Use an initial value of 5 and give the result | ng your of each |
|     | iteration to 5 significant figures.                                                                                                                                                               | [3]             |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |
|     |                                                                                                                                                                                                   |                 |

(b) Show that the value of the parameter t at B satisfies the equation

| Nov/2023/Paper_9709/31/No.1                                                                                     |
|-----------------------------------------------------------------------------------------------------------------|
| Find the exact coordinates of the points on the curve $y = \frac{x^2}{1-3x}$ at which the gradient of the tange |
| is equal to 8. $1 - 3x$                                                                                         |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |

## **4.** Nov/2023/Paper\_9709/31/No.6

The parametric equations of a curve are

$$x = \sqrt{t} + 3, \qquad y = \ln t,$$

for t > 0.

| (a)        | Obtain a simplified expression for $\frac{dy}{dx}$ in terms of $t$ . [3]                       |
|------------|------------------------------------------------------------------------------------------------|
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
| <b>(b)</b> | Hence find the exact coordinates of the point on the curve at which the gradient of the normal |
| (2)        | is -2. (3)                                                                                     |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |
|            |                                                                                                |

| The parametric equations of a cur     | ve are           |                  |              |     |
|---------------------------------------|------------------|------------------|--------------|-----|
|                                       | $x = (\ln t)^2,$ | $y = e^{2-t^2},$ |              |     |
| for $t > 0$ .                         |                  |                  |              |     |
| Find the gradient of the curve at the | he point where t | = e, simplifying | your answer. | [4] |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  | 0            |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  | <i>j</i>         |              |     |
|                                       | 00               |                  |              |     |
|                                       | 10x              |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
| * 5                                   |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |
|                                       |                  |                  |              |     |

**5.** Nov/2023/Paper\_9709/32/No.2

| Nov/2023/Paper_9709/33/No.5                                                                       |       |
|---------------------------------------------------------------------------------------------------|-------|
| Find the exact coordinates of the stationary points of the curve $y = \frac{e^{3x^2-1}}{1-x^2}$ . | [6]   |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
| <i>O</i> -                                                                                        |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
| 300                                                                                               |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   |       |
|                                                                                                   | ••••• |
|                                                                                                   |       |

| 7. | Nov | /2023/Paper_9709/33/No.7                                   |
|----|-----|------------------------------------------------------------|
|    | The | equation of a curve is $x^3 + y^2 + 3x^2 + 3y = 4$ .       |
|    | (a) | Show that $\frac{dy}{dx} = -\frac{3x^2 + 6x}{2y + 3}.$ [3] |
|    |     |                                                            |
|    |     |                                                            |
|    |     |                                                            |
|    |     |                                                            |
|    |     |                                                            |
|    |     |                                                            |
|    |     |                                                            |
|    |     |                                                            |
|    |     |                                                            |
|    |     | 69                                                         |
|    |     |                                                            |
|    |     | 40                                                         |
|    |     |                                                            |

| Hence find the coordinates of the points on the curve at which the tangent is parallel to the $x$ -a |
|------------------------------------------------------------------------------------------------------|
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
| .07                                                                                                  |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
| 600                                                                                                  |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |
|                                                                                                      |