<u>Vectors – 2023 Nov CIE Mathematics</u> (a) Find the position vector of M. 1. Nov/2023/Paper_9709/31/No.11 In the diagram, OABCDEFG is a cuboid in which OA = 3 units, OC = 2 units and OD = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OD and OC respectively. M is the midpoint of EF. [1] | | <u> </u> | |------------|---| | The | position vector of P is $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$. | | (b) | Calculate angle <i>PAM</i> . [4] | | | | | | *** | Find the exact length of the perpendicular from P to the line passing through O and M . | |--|---| ## **2.** Nov/2023/Paper_9709/32/No.10 The equations of the lines l and m are given by *l*: $$\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$ and m : $\mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 4 \\ c \end{pmatrix}$, where c is a positive constant. It is given that the angle between l and m is 60° . | (a) | Find the value of c . | [4] | |-----|-------------------------|-----| | | | | | | | | | | | | | | | 0 | *** | ▲ (C | X | |-------------|----------| | | | | | Ÿ | ••• | The line l has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} + \lambda(-\mathbf{i} + \mathbf{j} + 2\mathbf{k})$. The points A and B have position vectors $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively. | | | | |--|--|--|--| | (a) | Find a unit vector in the direction of l . [2] | .0, | | | | | 20 | Co | | | | The | line m passes through the points A and B . | | | | | Find a vector equation for m . [2] | 3. Nov/2023/Paper_9709/33/No.11 | Determine whether lines l and m are parallel, intersect or are skew. | [5] | |--|-------| 10 | | | 29 | | | | | | | | | | | | C'O' | | | | | | | | | A200 | ••••• | | | ••••• | | ••* | ••••• | | | | | | | | | | | | | | | | | | |