<u>Vectors – 2023 Nov CIE Mathematics</u>

(a) Find the position vector of M.

1. Nov/2023/Paper_9709/31/No.11

In the diagram, OABCDEFG is a cuboid in which OA = 3 units, OC = 2 units and OD = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OD and OC respectively. M is the midpoint of EF.

[1]

	<u> </u>
The	position vector of P is $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.
(b)	Calculate angle <i>PAM</i> . [4]

	Find the exact length of the perpendicular from P to the line passing through O and M .

2. Nov/2023/Paper_9709/32/No.10

The equations of the lines l and m are given by

l:
$$\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 and m : $\mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 4 \\ c \end{pmatrix}$,

where c is a positive constant. It is given that the angle between l and m is 60° .

(a)	Find the value of c .	[4]
		0

▲ (C	X
	Ÿ
•••	

The line l has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} + \lambda(-\mathbf{i} + \mathbf{j} + 2\mathbf{k})$. The points A and B have position vectors $-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively.			
(a)	Find a unit vector in the direction of l . [2]		
	.0,		
	20		
	Co		
The	line m passes through the points A and B .		
	Find a vector equation for m . [2]		

3. Nov/2023/Paper_9709/33/No.11

Determine whether lines l and m are parallel, intersect or are skew.	[5]
10	
29	
C'O'	
A200	•••••
	•••••
••*	•••••