<u>Integration – 2023 Nov CIE Mathematics</u> 1. Nov/2023/Paper_9709/21/No.3 | Fi | nd $\int_4^{10} \frac{4}{2x-5} dx$, giving your answer in the form $\ln a$, where a is an integer. | | |------|--|---| | | | | | | | | | •••• | | | | ••• | | ••••• | | ••• | | | | | | | | | | | | | . 29 | | | ••• | | | | ••• | | ••••• | | | | | | | | | | •••• | | | | ••• | | ••••• | | | | | | | | | | | | | | ••• | | ••••• | | T: | x = 1 the constant $x = 6$ $x = 2x - 5$ due | | | ГΊ | nd the exact value of $\int_4^{10} e^{2x-5} dx$. | | | | | | | | | | | •••• | | ••••• | | ••• | | ••••• | | | | | | | | | | | | | | ••• | | • | The diagram shows the curve with equation $y = 6e^{-\frac{1}{2}x}$. The points on the curve with x-coordinates 0 and 2 are denoted by A and B respectively. The shaded region is enclosed by the curve, the line through A parallel to the x-axis and the line through B parallel to the y-axis. | (a) | Find the exact gradient of the curve at B . | 20 | [2] | |-----|---|-----|-----------| | | | |
••••• | | | -1 | (0) | ••••• | | | ~ | |
 | | | - % | , |
 | | | AQ.0". | |
 | | | | |
••••• | | | *** | |
••••• | | | | | | | | | |
••••• | | | | |
••••• | | | | |
••••• | | | | |
 | | | | |
 | |) | Find the exact area of the shaded region. | [3] | |---|---|-----| Find the quotient when $6x^3 - 5x^2 - 24x - 4$ is divided by $(2x + 1)$, and show that the rer is 6. | |---| 40 ° | | | | | | | | | | | | | | | | | | 10° | (b) | Hence | find | |------------|-------|------| | | | | $$\int_{2}^{7} \frac{6x^{3} - 5x^{2} - 24x - 4}{2x + 1} dx,$$ rm $a + \ln b$, where a and b are | giving your answer in the form $a + \ln b$, where a and b are integers. | [5] | |--|-----| | | | | | | | | | | | | | 10 | | | . 29 | ## **4.** Nov/2023/Paper_9709/31/No.9 The diagram shows the curve $y = xe^{-\frac{1}{4}x^2}$, for $x \ge 0$, and its maximum point M. | (a) | Find the exact coordinates of M . | [4] | |-----|-------------------------------------|---| | | <u> </u> | ••••• | | | | ••••• | | | | | | | 29 | ••••• | | | | | | | | | | | | · • • • • • • • • • • • • • • • • • • • | | | | | | | | ••••• | | | | | | | | ••••• | | | | ••••• | | | | | | | | ••••• | | | | | | | urve, the <i>x</i> -axis an | | | | | |-------|-----------------------------|-------|---|----|---| ••••• | ••••• | | • | | ••••• | 9 | | | | | | | | | | | | | .0 | | | | | ••••• | - 4 | 3 | 0 | | | | | | | | • | | | | | 50 | • | | ••••• | • | | | | | | | | | | | | | | | | | | | ••••• | ••••• | ••••• | ••••• | • | | • | | Nov/2023/Paper_9709/32/No.5 | | |---|-----| | Find the exact value of $\int_0^6 \frac{x(x+1)}{x^2+4} dx.$ | [6] | | | | | | | | | | | | | | | | | 20 | | | . 29 | | | | | | | | | | | | | | | 50 | 5. ## **6.** Nov/2023/Paper_9709/32/No.9 The diagram shows the curve $y = \sin x \cos 2x$, for $0 \le x \le \pi$, and a maximum point M, where x = a. The shaded region between the curve and the x-axis is denoted by R. |) | Find the value of a correct to 2 decimal places. | |---|--| | | | | | . 29 | *** | Find the exact area of the region R , giving your answer in simplified form. | | |--|--| 29 | | | | | | 10, | | | | | | CO | | | | | | | | | 10.0 1 | | | | | | *** | **7.** Nov/2023/Paper_9709/33/No.10 The diagram shows the curve $y = x \cos 2x$, for $x \ge 0$. | (a) | Find the equation of the tangent to the curve at the point where $x = \frac{1}{2}\pi$. [4] | |-----|---| | | | | | | | | C C C C C C C C C C C C C C C C C C C | (b) | Find the exact area of the shaded region shown in the diagram, bounded by the curve and x -axis. | the
[5] | |------------|--|------------| |