The Poisson distribution – 2023 Nov CIE Mathematics ## 1. Nov/2023/Paper_9709/61/No.3 A website owner finds that, on average, his website receives 0.3 hits per minute. He believes that the number of hits per minute follows a Poisson distribution. | a) | Assume that the owner is correct. | | | |----|-----------------------------------|---|--| | | (i) | Find the probability that there will be at least 4 hits during a 10-minute period. [3] | CO | | | | | | | | | (ii) | Use a suitable approximating distribution to find the probability that there will be fewer than 40 hits during a 3-hour period. [4] | A friend agrees that the website receives, on average, 0.3 hits per minute. However, she notices that the number of hits during the day-time $(9.00\,\mathrm{am}$ to $9.00\,\mathrm{pm})$ is usually about twice the number of hits during the night-time $(9.00\,\mathrm{pm}$ to $9.00\,\mathrm{am})$. | (b) | (i) | Explain why this fact contradicts the owner's belief that the number of hits per minute follows a Poisson distribution. [1] | |-----|------|--| .0 | | | | | | | | | | | (ii) | Specify separate Poisson distributions that might be suitable models for the number of hits during the day-time and during the night-time. [2] | *** | (a) | A random variable X has the distribution $Po(25)$. | |------------|--| | | Use the normal approximation to the Poisson distribution to find $P(X > 30)$. [4] | (b) | A random variable Y has the distribution B(100, p) where $p < 0.05$. | | | Use the Poisson approximation to the binomial distribution to write down an expression, in terms of p , for $P(Y < 3)$. [2] | | | | | | | | | | | | | | | | **2.** Nov/2023/Paper_9709/62/No.1 | A random variable X has the distribution $Po(2.4)$. | | | | | |--|--|--|--|--| | Find $P(2 \le X < 4)$. | [2] | Two independent values of X are chosen. | | | | | | Find the probability that both of these values are greater than 1. | [3] | Find $P(2 \le X < 4)$. Two independent values of X are chosen. | | | | 3. Nov/2023/Paper_9709/62/No.7 | (c) | It is | s given that $P(X = r) < P(X = r + 1)$. | | |------------|------------|---|-----| | | (i) | Find the set of possible values of r . | [3] | 307 | 0.0 | | | | | | | | | | | | | | | | | | | (ii) | Hence find the value of r for which $P(X = r)$ is greatest. | [1] | | | | | | | | | | | | | | | |