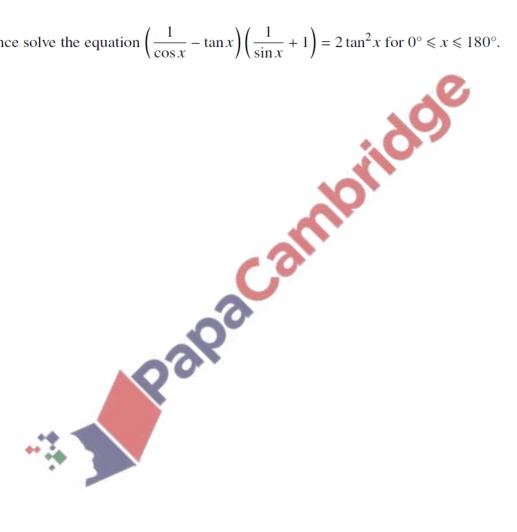

<u>Trigonometry - 2020 AS</u>

1. Nov/2020/Paper_9709/11/No.7

(a) Show that
$$\frac{\sin \theta}{1 - \sin \theta} - \frac{\sin \theta}{1 + \sin \theta} = 2 \tan^2 \theta$$
. [3]

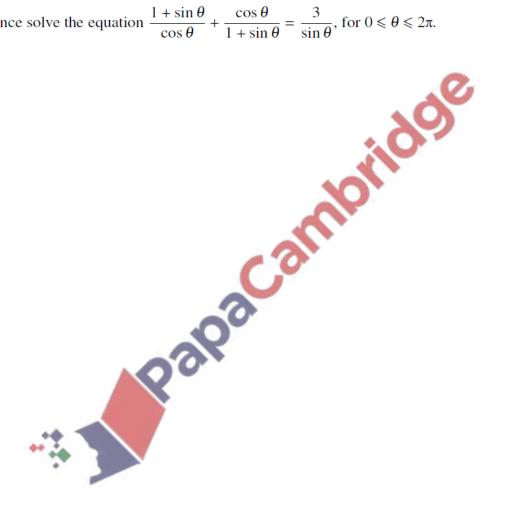

(b) Hence solve the equation
$$\frac{\sin \theta}{1 - \sin \theta} - \frac{\sin \theta}{1 + \sin \theta} = 8$$
, for $0^{\circ} < \theta < 180^{\circ}$. [3]

Nov/2020/Paper_9709/12/No.6

(a) Prove the identity
$$\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = \frac{1}{\tan x}$$
. [4]

(b) Hence solve the equation
$$\left(\frac{1}{\cos x} - \tan x\right) \left(\frac{1}{\sin x} + 1\right) = 2 \tan^2 x$$
 for $0^\circ \le x \le 180^\circ$. [2]

3. Nov/2020/Paper_9709/13/No.3


Solve the equation $3 \tan^2 \theta + 1 = \frac{2}{\tan^2 \theta}$ for $0^\circ < \theta < 180^\circ$. [5]

June/2020/Paper_9709/11/No.7

(a) Prove the identity
$$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} = \frac{2}{\cos\theta}$$
. [3]

(b) Hence solve the equation
$$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} = \frac{3}{\sin\theta}$$
, for $0 \le \theta \le 2\pi$. [3]

- **5.** June/2020/Paper_9709/12/No.2
 - (a) Express the equation $3\cos\theta = 8\tan\theta$ as a quadratic equation in $\sin\theta$.

[3]

[2]

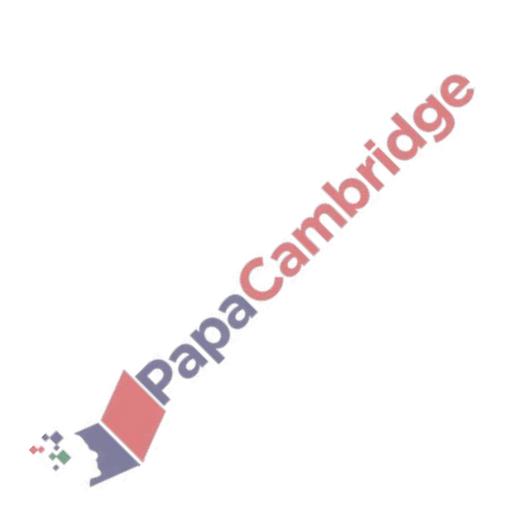
(b) Hence find the acute angle, in degrees, for which $3 \cos \theta = 8 \tan \theta$.

Papa Cambridge

6. June/2020/Paper_9709/13/No.7

(a) Show that
$$\frac{\tan \theta}{1 + \cos \theta} + \frac{\tan \theta}{1 - \cos \theta} = \frac{2}{\sin \theta \cos \theta}$$
. [4]

(b) Hence solve the equation
$$\frac{\tan \theta}{1 + \cos \theta} + \frac{\tan \theta}{1 - \cos \theta} = \frac{6}{\tan \theta}$$
 for $0^{\circ} < \theta < 180^{\circ}$. [4]



7. March/2020/Paper_9709/12/No.5

Solve the equation

$$\frac{\tan\theta + 3\sin\theta + 2}{\tan\theta - 3\sin\theta + 1} = 2$$

for $0^{\circ} \leqslant \theta \leqslant 90^{\circ}$. [5]

8. March/2020/Paper_9709/12/No.11

(a) Solve the equation $3\tan^2 x - 5\tan x - 2 = 0$ for $0^\circ \le x \le 180^\circ$. [4]

(b) Find the set of values of k for which the equation $3 \tan^2 x - 5 \tan x + k = 0$ has no solutions. [2]

(c) For the equation $3 \tan^2 x - 5 \tan x + k = 0$, state the value of k for which there are three solutions in the interval $0^\circ \le x \le 180^\circ$, and find these solutions. [3]