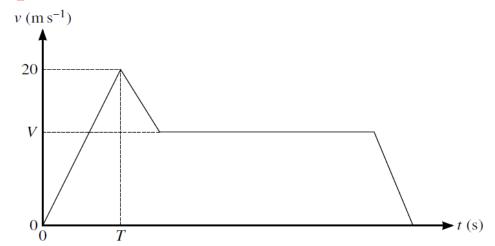

1. Nov/2020/Paper_9709/41/No.4


A particle *P* moves in a straight line. It starts from rest at a point *O* on the line and at time *t* s after leaving *O* it has acceleration $a \, \text{m s}^{-2}$, where a = 6t - 18.

[6]

Find the distance P moves before it comes to instantaneous rest.

2. Nov/2020/Paper_9709/42/No.4

The diagram shows a velocity-time graph which models the motion of a car. The graph consists of four straight line segments. The car accelerates at a constant rate of $2 \,\mathrm{m\,s^{-2}}$ from rest to a speed of $20 \,\mathrm{m\,s^{-1}}$ over a period of T s. It then decelerates at a constant rate for 5 seconds before travelling at a constant speed of $V \,\mathrm{m\,s^{-1}}$ for 27.5 s. The car then decelerates to rest at a constant rate over a period of $5 \,\mathrm{s}$.

(b) Given that the distance travelled up to the point at which the car begins to move with constant speed is one third of the total distance travelled, find V. [4]


3. Nov/2020/Paper_9709/42/No.5

A particle is projected vertically upwards with speed $40 \,\mathrm{m \, s^{-1}}$ alongside a building of height h m.

(a) Given that the particle is above the level of the top of the building for $4 \, \text{s}$, find h. [4]

(b) One second after the first particle is projected, a second particle is projected vertically upwards from the top of the building with speed $20 \,\mathrm{m \, s^{-1}}$.

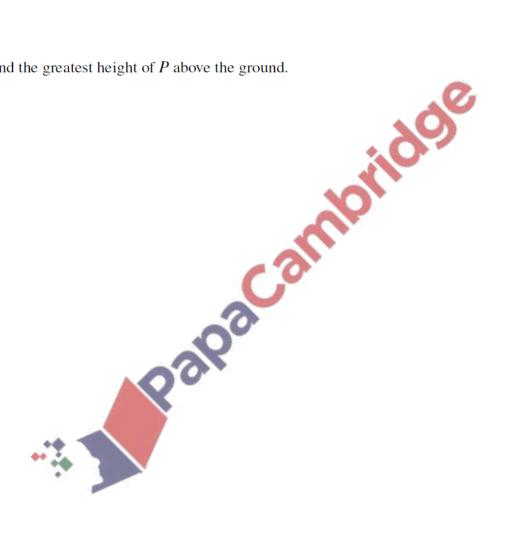
Denoting the time after projection of the first particle by t s, find the value of t for which the two particles are at the same height above the ground. [4]

Nov/2020/Paper_9709/42/No.7

A particle P moves in a straight line, starting from a point O with velocity $1.72 \,\mathrm{m \, s^{-1}}$. The acceleration $a \,\mathrm{m\,s^{-2}}$ of the particle, $t \,\mathrm{s}$ after leaving O, is given by $a = 0.1t^{\frac{3}{2}}$.

(a) Find the value of t when the velocity of P is $3 \,\mathrm{m \, s^{-1}}$. [4]

(b) Find the displacement of P from O when t = 2, giving your answer correct to 2 decimal places.


Nov/2020/Paper_9709/43/No.1

A particle P is projected vertically upwards with speed $v \,\mathrm{m\,s^{-1}}$ from a point on the ground. P reaches its greatest height after 3 s.

[1] (a) Find v.

(b) Find the greatest height of *P* above the ground.

[2]

Nov/2020/Paper_9709/43/No.5

A particle *P* moves in a straight line. It starts at a point *O* on the line and at time *t* s after leaving *O* it has velocity $v \, \text{m s}^{-1}$, where $v = 4t^2 - 20t + 21$.

(a) Find the values of t for which P is at instantaneous rest. [2]

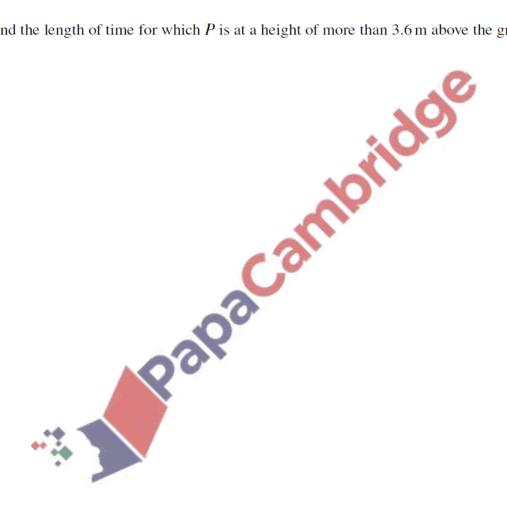
(b) Find the initial acceleration of P.

[2]

(c) Find the minimum velocity of *P*.

[2]

ving (d) Find the distance travelled by P during the time when its velocity is negative.

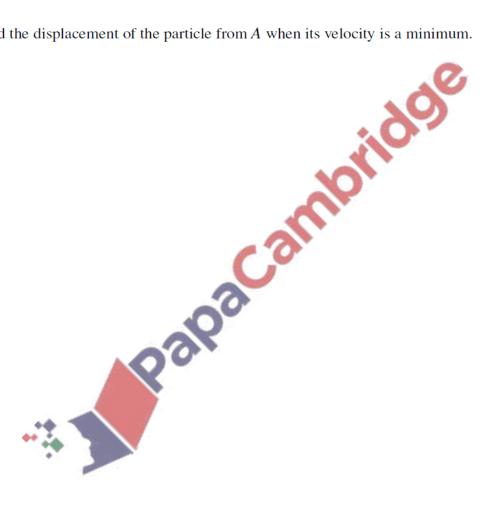

[4]

7. June/2020/Paper_9709/41/No.3

A particle P is projected vertically upwards with speed $5 \,\mathrm{m\,s^{-1}}$ from a point A which is 2.8 m above horizontal ground.

(a) Find the greatest height above the ground reached by P. [3]

(b) Find the length of time for which P is at a height of more than $3.6 \,\mathrm{m}$ above the ground. [4]


8. June/2020/Paper_9709/41/No.6

A particle moves in a straight line AB. The velocity $v \text{ m s}^{-1}$ of the particle t s after leaving A is given by $v = k(t^2 - 10t + 21)$, where k is a constant. The displacement of the particle from A, in the direction towards B, is 2.85 m when t = 3 and is 2.4 m when t = 6.

(a) Find the value of k. Hence find an expression, in terms of t, for the displacement of the particle

(b) Find the displacement of the particle from A when its velocity is a minimum.

[4]

9. June/2020/Paper_9709/42/No.1

A tram starts from rest and moves with uniform acceleration for 20 s. The tram then travels at a constant speed, $V \,\mathrm{m\,s^{-1}}$, for 170 s before being brought to rest with a uniform deceleration of magnitude twice that of the acceleration. The total distance travelled by the tram is 2.775 km.

(a) Sketch a velocity-time graph for the motion, stating the total time for which the tram is moving.

(b) Find *V*. [2]

Papacambidoe (c) Find the magnitude of the acceleration. [2]

10. June/2020/Paper_9709/42/No.6

A particle P moves in a straight line. The velocity $v \text{ m s}^{-1}$ at time t s is given by

$$v = 2t + 1 \qquad \text{for } 0 \le t \le 5,$$

$$v = 36 - t^2 \qquad \text{for } 5 \le t \le 7,$$

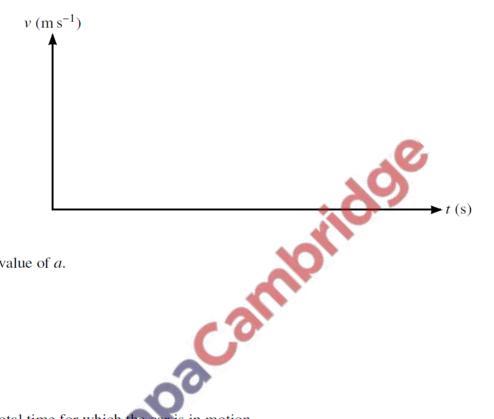
$$v = 2t - 27$$
 for $7 \le t \le 13.5$.

(a) Sketch the velocity-time graph for $0 \le t \le 13.5$.

[3]

(b) Find the acceleration at the instant when t = 6.

[2]


(c) Find the total distance travelled by P in the interval $0 \le t \le 13.5$.

[5]

11. June/2020/Paper_9709/43/No.4

A car starts from rest and moves in a straight line with constant acceleration $a \,\mathrm{m\,s^{-2}}$ for a distance of 50 m. The car then travels with constant velocity for 500 m for a period of 25 s, before decelerating to rest. The magnitude of this deceleration is $2a \,\mathrm{m\,s^{-2}}$.

(a) Sketch the velocity-time graph for the motion of the car. [1]

(b) Find the value of *a*.

[3]

(c) Find the total time for which the car is in motion.

[3]

12. June/2020/Paper_9709/43/No.6

A particle travels in a straight line PQ. The velocity of the particle t s after leaving P is v m s⁻¹, where $v = 4.5 + 4t - 0.5t^2.$

(a) Find the velocity of the particle at the instant when its acceleration is zero. [3]

The particle comes to instantaneous rest at Q.

Papa Cambridge

Rapa Cambridge **(b)** Find the distance PQ. [6]

13. March/2020/Paper_9709/42/No.4

A cyclist travels along a straight road with constant acceleration. He passes through points A, B and C. The cyclist takes 2 seconds to travel along each of the sections AB and BC and passes through B with speed 4.5 m s⁻¹. The distance AB is $\frac{4}{5}$ of the distance BC.

(a) Find the acceleration of the cyclist. [5]

Palpacambridge **(b)** Find *AC*. [2]

14. March/2020/Paper_9709/42/No.7

A particle moves in a straight line through the point O. The displacement of the particle from O at time t s is s m, where

$$s = t^2 - 3t + 2$$
 for $0 \le t \le 6$,
 $s = \frac{24}{t} - \frac{t^2}{4} + 25$ for $t \ge 6$.

(a) Find the value of t when the particle is instantaneously at rest during the first 6 seconds of its motion. [2]

At t = 6, the particle hits a barrier at a point P and rebounds.

(b) Find the velocity with which the particle arrives at *P* and also the velocity with which the particle leaves *P*.

(c) Find the total distance travelled by the particle in the first 10 seconds of its motion. [5]

