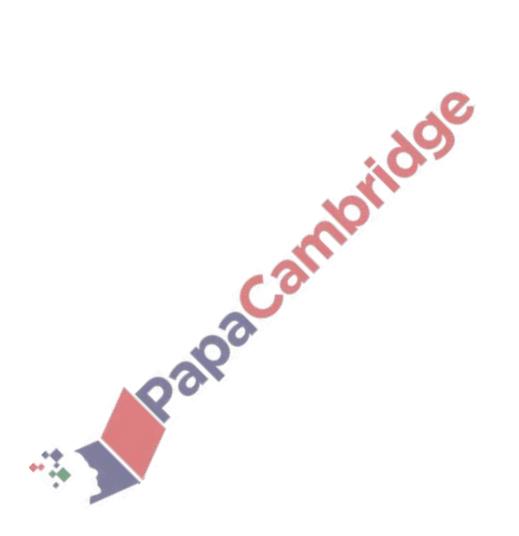

1. June/2021/Paper_9709/11/No.2

The sum of the first 20 terms of an arithmetic progression is 405 and the sum of the first 40 terms is 1410.

Find the 60th term of the progression.

[5]

- **2.** June/2021/Paper_9709/11/No.3
 - (a) Find the first three terms in the expansion of $(3-2x)^5$ in ascending powers of x. [3]


(b) Hence find the coefficient of x^2 in the expansion of $(4+x)^2(3-2x)^5$. [3]

3. June/2021/Paper_9709/11/No.5

The fifth, sixth and seventh terms of a geometric progression are 8k, -12 and 2k respectively.

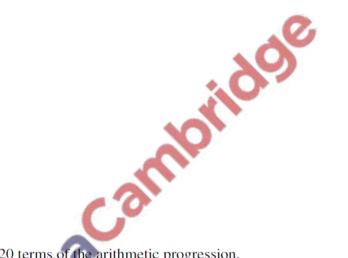
[4]

Given that k is negative, find the sum to infinity of the progression.

4. June/2021/Paper_9709/12/No.4

The coefficient of x in the expansion of $\left(4x + \frac{10}{x}\right)^3$ is p. The coefficient of $\frac{1}{x}$ in the expansion of $\left(2x + \frac{k}{x^2}\right)^5$ is q.

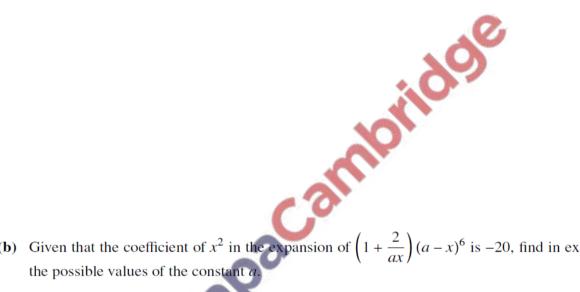
[5]


Given that p = 6q, find the possible values of k.

5. June/2021/Paper_9709/12/No.8

The first, second and third terms of an arithmetic progression are a, $\frac{3}{2}a$ and b respectively, where a and b are positive constants. The first, second and third terms of a geometric progression are a, 18 and b + 3 respectively.

(a) Find the values of a and b. [5]



[3]

(b) Find the sum of the first 20 terms of the arithmetic progression.

(a) Write down the first four terms of the expansion, in ascending powers of x, of $(a-x)^6$. [2]

(b) Given that the coefficient of x^2 in the expansion of $\left(1 + \frac{2}{ax}\right)(a-x)^6$ is -20, find in exact form the possible values of the constant a. [5]

7.	June/	2021/	'Paper	9709/	¹ 3/No.9	
----	-------	-------	--------	-------	---------------------	--

(a) A geometric progression is such that the second term is equal to 24% of the sum to infinity.

Find the possible values of the common ratio.

[3]

(b) An arithmetic progression P has first term a and common difference d. An arithmetic progression Q has first term 2(a+1) and common difference (d+1). It is given that

 $\frac{5\text{th term of } P}{12\text{th term of } Q} = \frac{1}{3} \quad \text{and} \quad \frac{\text{Sum}}{\text{Sum}}$

Sum of first 5 terms of $\frac{P}{S} = \frac{2}{3}$

Find the value of a and the value of d.

[6]

- **8.** March/2021/Paper_9709/12/No.1
 - (a) Find the first three terms in the expansion, in ascending powers of x, of $(1+x)^5$. [1]

- (b) Find the first three terms in the expansion, in ascending powers of x, of $(1-2x)^6$. [2]
- (c) Hence find the coefficient of x^2 in the expansion of $(1+x)^5(1-2x)^6$. [2]

9. March/2021/Paper_9709/12/No.9

The first term of a progression is $\cos \theta$, where $0 < \theta < \frac{1}{2}\pi$.

(a) For the case where the progression is geometric, the sum to infinity is $\frac{1}{\cos \theta}$.

(i) Show that the second term is $\cos \theta \sin^2 \theta$. [3]

(ii) Find the sum of the first 12 terms when $\theta = \frac{1}{3}\pi$, giving your answer correct to 4 significant figures. [2]

(b) For the case where the progression is arithmetic, the first two terms are again $\cos \theta$ and $\cos \theta \sin^2 \theta$ respectively.

Find the 85th term when $\theta = \frac{1}{3}\pi$.

[4]