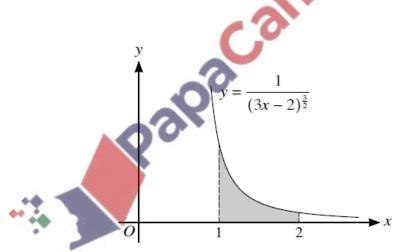
<u>Differentiation and Integration – 2021 AS Nov</u>

1.	Nov	/2021	/Paper	9709	/11	/No o


A curve has equation y = f(x), and it is given that $f'(x) = 2x^2 - 7 - \frac{4}{x^2}$.

Given that $f(1) = -\frac{1}{3}$, find $f(x)$.	
	<u>\$</u>
•	0
	•

(b)	Find the coordinates of the stationary points on the curve.	[5]
(c)	Find $f''(x)$.	[1]
(0)		[1]

(d)	Hence, or otherwise, determine the nature of each of the stationary points.	[2]

[4]

The diagram shows the curve with equation $y = \frac{1}{(3x-2)^{\frac{3}{2}}}$. The shaded region is bounded by the curve, the *x*-axis and the lines x = 1 and x = 2. The shaded region is rotated through 360° about the *x*-axis.

(b)	Find the volume of revolution.	[4]
		••••

The	be normal to the curve at the point $(1, 1)$ crosses the y-axis at the point A .	
	Find the <i>y</i> -coordinate of <i>A</i> .	[4
		[4
		[4
		[4
		[4
		[4
	Find the y-coordinate of A.	[4
	Find the y-coordinate of A.	[4
	Find the y-coordinate of A.	[4
	Find the y-coordinate of A.	[4
	Find the y-coordinate of A.	[4
	Find the y-coordinate of A.	[4

A curve is such that $\frac{dy}{dx} = \frac{8}{(3x+2)^2}$. The curve passes through the point $(2, 5\frac{2}{3})$.	
Find the equation of the curve.	[4]
60	
R	

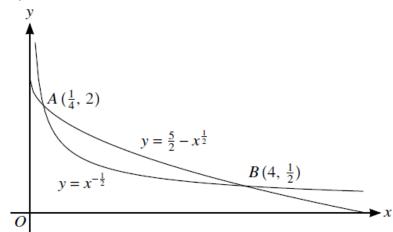
The volume V m ³ of a large circular mound of iron ore of radius r m is modelled by the equation $V = \frac{3}{2}(r - \frac{1}{2})^3 - 1$ for $r \ge 2$. Iron ore is added to the mound at a constant rate of 1.5 m ³ per second.		
(a)	Find the rate at which the radius of the mound is increasing at the instant when the radius is 5.5m . [3]	
	. 89	
	Q'0'	

• • •	
•••	
•••	
• • •	
• • •	20
• • •	
• • •	•••••
• • •	

The	function f is defined by $f(x) = x^2 + \frac{k}{x} + 2$ for $x > 0$.
(a)	Given that the curve with equation $y = f(x)$ has a stationary point when $x = 2$, find k . [3]
	200

(b)	Determine the nature of the stationary point.	2]
		-
		•••
		•••
(c)	Given that this is the only stationary point of the curve, find the range of f.	2]
		•••
		•••

The diagram shows the line $x = \frac{5}{2}$, part of the curve $y = \frac{1}{2}x + \frac{7}{10} - \frac{1}{(x-2)^{\frac{1}{3}}}$ and the normal to the curve at the point $A\left(3, \frac{6}{5}\right)$.


(a)	Find the x -coordinate of the point where the normal to the curve meets the x -axis. [5]
	100

Find the area of the shaded region, giving your answer correct to 2 decimal places.	[6]
10	

7.	Nov/2021/Paper_	9709/13/3(b)
• •	,, apc	_5,05,10,0(8)

(b) The function f is defined by $f(x) = x^5 - 10x^3 + 50x$ for $x \in \mathbb{R}$.

Determine whether f is an increasing function, a decreasing function or neither.	[3]
C	

The diagram shows the curves with equations $y = x^{-\frac{1}{2}}$ and $y = \frac{5}{2} - x^{\frac{1}{2}}$. The curves intersect at the points $A(\frac{1}{4}, 2)$ and $B(4, \frac{1}{2})$.

(a)	Find the area of the region between the two curves. [6]
	A0'0'

(b)	The normal to the curve $y = x^{-\frac{1}{2}}$ at the point $(1, 1)$ intersects the y-axis at the point	nt $(0, p)$.
	Find the value of p .	[4]
		••••••
	C C	

7.	Nov/2021/Paper_	9709/13/10
•	140 4/ 2021/1 apci_	_3,03,13,10

A curve has equation y = f(x) and it is given that

$$f'(x) = (\frac{1}{2}x + k)^{-2} - (1 + k)^{-2},$$

where k is a constant. The curve has a minimum point at x = 2.

(a)	Find $f''(x)$ in terms of k and x , and hence find the set of possible values of k .	[3]
		•••••
		•••••
It is		
	400	
	now given that $k = -3$ and the minimum point is at $(2, 3\frac{1}{2})$.	
	Find $f(x)$.	[4]

(c)	Find the coordinates of the other stationary point and determine its nature. [4]
	**